sin(pi-3*a)еслиa=-1/3 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
sin(pi - 3*a)
sin(π3a)\sin{\left(\pi - 3 a \right)}
Подстановка условия [src]
sin(pi - 3*a) при a = -1/3
подставляем
sin(pi - 3*a)
sin(π3a)\sin{\left(\pi - 3 a \right)}
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
переменные
a = -1/3
a=13a = - \frac{1}{3}
sin(3*(-1/3))
sin(3(1/3))\sin{\left(3 (-1/3) \right)}
-sin(1)
sin(1)- \sin{\left(1 \right)}
Степени [src]
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
   /   I*(-pi + 3*a)    I*(pi - 3*a)\ 
-I*\- e              + e            / 
--------------------------------------
                  2                   
i(ei(π3a)ei(3aπ))2- \frac{i \left(e^{i \left(\pi - 3 a\right)} - e^{i \left(3 a - \pi\right)}\right)}{2}
Численный ответ [src]
sin(pi - 3*a)
Рациональный знаменатель [src]
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
Объединение рациональных выражений [src]
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
Общее упрощение [src]
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
Собрать выражение [src]
sin(3*a)
sin(3a)\sin{\left (3 a \right )}
Комбинаторика [src]
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
Общий знаменатель [src]
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
Тригонометрическая часть [src]
      1      
-------------
   /      pi\
sec|3*a - --|
   \      2 /
1sec(3aπ2)\frac{1}{\sec{\left(3 a - \frac{\pi}{2} \right)}}
sin(3*a)
sin(3a)\sin{\left(3 a \right)}
/      0        for And(im(a) = 0, -3*a mod pi = 0)
|                                                  
|       /3*a\                                      
|  2*tan|---|                                      
<       \ 2 /                                      
|-------------               otherwise             
|       2/3*a\                                     
|1 + tan |---|                                     
\        \ 2 /                                     
{0forim(a)=03amodπ=02tan(3a2)tan2(3a2)+1otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{3 a}{2} \right)}}{\tan^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}
/      0        for And(im(a) = 0, 3*a mod pi = 0)
|                                                 
|       /3*a\                                     
|  2*cot|---|                                     
<       \ 2 /                                     
|-------------              otherwise             
|       2/3*a\                                    
|1 + cot |---|                                    
\        \ 2 /                                    
{0forim(a)=03amodπ=02cot(3a2)cot2(3a2)+1otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}
/                        0                           for And(im(a) = 0, -3*a mod pi = 0)
|                                                                                       
|/      0        for And(im(a) = 0, 3*a mod pi = 0)                                     
||                                                                                      
||       /3*a\                                                                          
<|  2*cot|---|                                                                          
|<       \ 2 /                                                    otherwise             
||-------------              otherwise                                                  
||       2/3*a\                                                                         
||1 + cot |---|                                                                         
\\        \ 2 /                                                                         
{0forim(a)=03amodπ=0{0forim(a)=03amodπ=02cot(3a2)cot2(3a2)+1otherwiseotherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}
/      0        for And(im(a) = 0, -3*a mod pi = 0)
|                                                  
<   /      pi\                                     
|cos|3*a - --|               otherwise             
\   \      2 /                                     
{0forim(a)=03amodπ=0cos(3aπ2)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\cos{\left(3 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}
      1      
-------------
   /pi      \
sec|-- - 3*a|
   \2       /
1sec(3a+π2)\frac{1}{\sec{\left(- 3 a + \frac{\pi}{2} \right)}}
   1    
--------
csc(3*a)
1csc(3a)\frac{1}{\csc{\left(3 a \right)}}
       /3*a\ 
  2*tan|---| 
       \ 2 / 
-------------
       2/3*a\
1 + tan |---|
        \ 2 /
2tan(3a2)tan2(3a2)+1\frac{2 \tan{\left(\frac{3 a}{2} \right)}}{\tan^{2}{\left(\frac{3 a}{2} \right)} + 1}
/   0      for And(im(a) = 0, -3*a mod pi = 0)
<                                             
\sin(3*a)               otherwise             
{0forim(a)=03amodπ=0sin(3a)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases}
           2            
------------------------
/        1    \    /3*a\
|1 + ---------|*tan|---|
|       2/3*a\|    \ 2 /
|    tan |---||         
\        \ 2 //         
2(1+1tan2(3a2))tan(3a2)\frac{2}{\left(1 + \frac{1}{\tan^{2}{\left(\frac{3 a}{2} \right)}}\right) \tan{\left(\frac{3 a}{2} \right)}}
   /      pi\
cos|3*a - --|
   \      2 /
cos(3aπ2)\cos{\left(3 a - \frac{\pi}{2} \right)}
/                      0                        for And(im(a) = 0, -3*a mod pi = 0)
|                                                                                  
{0forim(a)=03amodπ=0{0forim(a)=03amodπ=0sin(3a)otherwiseotherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}
/           0              for And(im(a) = 0, -3*a mod pi = 0)
|                                                             
|           2                                                 
|------------------------               otherwise             
{0forim(a)=03amodπ=02(1+1cot2(3a2))cot(3a2)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(\frac{3 a}{2} \right)}}\right) \cot{\left(\frac{3 a}{2} \right)}} & \text{otherwise} \end{cases}
/      0        for And(im(a) = 0, -3*a mod pi = 0)
|                                                  
|      1                                           
<-------------               otherwise             
|   /      pi\                                     
|sec|3*a - --|                                     
\   \      2 /                                     
{0forim(a)=03amodπ=01sec(3aπ2)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\frac{1}{\sec{\left(3 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}
/   0      for And(im(a) = 0, -3*a mod pi = 0)
|                                             
<   1                                         
|--------               otherwise             
\csc(3*a)                                     
{0forim(a)=03amodπ=01csc(3a)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge - 3 a \bmod \pi = 0 \\\frac{1}{\csc{\left(3 a \right)}} & \text{otherwise} \end{cases}
       /3*a\ 
  2*cot|---| 
       \ 2 / 
-------------
       2/3*a\
1 + cot |---|
        \ 2 /
2cot(3a2)cot2(3a2)+1\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1}
/   0      for And(im(a) = 0, 3*a mod pi = 0)
<                                            
\sin(3*a)              otherwise             
{0forim(a)=03amodπ=0sin(3a)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases}
   /pi      \
cos|-- - 3*a|
   \2       /
cos(3a+π2)\cos{\left(- 3 a + \frac{\pi}{2} \right)}
Раскрыть выражение [src]
       3              
- 4*sin (a) + 3*sin(a)
4sin3(a)+3sin(a)- 4 \sin^{3}{\left(a \right)} + 3 \sin{\left(a \right)}