Тригонометрическая часть
[src] / 2 \ / 2/3*a\\ /3*a\
\1 - tan (a)/*|1 - tan |---|| 4*tan(a)*tan|---|
\ \ 2 // \ 2 /
----------------------------- - -----------------------------
/ 2 \ / 2/3*a\\ / 2 \ / 2/3*a\\
\1 + tan (a)/*|1 + tan |---|| \1 + tan (a)/*|1 + tan |---||
\ \ 2 // \ \ 2 // ( 1 − tan 2 ( a ) ) ( 1 − tan 2 ( 3 a 2 ) ) ( tan 2 ( a ) + 1 ) ( tan 2 ( 3 a 2 ) + 1 ) − 4 tan ( a ) tan ( 3 a 2 ) ( tan 2 ( a ) + 1 ) ( tan 2 ( 3 a 2 ) + 1 ) \frac{\left(1 - \tan^{2}{\left(a \right)}\right) \left(1 - \tan^{2}{\left(\frac{3 a}{2} \right)}\right)}{\left(\tan^{2}{\left(a \right)} + 1\right) \left(\tan^{2}{\left(\frac{3 a}{2} \right)} + 1\right)} - \frac{4 \tan{\left(a \right)} \tan{\left(\frac{3 a}{2} \right)}}{\left(\tan^{2}{\left(a \right)} + 1\right) \left(\tan^{2}{\left(\frac{3 a}{2} \right)} + 1\right)} ( tan 2 ( a ) + 1 ) ( tan 2 ( 2 3 a ) + 1 ) ( 1 − tan 2 ( a ) ) ( 1 − tan 2 ( 2 3 a ) ) − ( tan 2 ( a ) + 1 ) ( tan 2 ( 2 3 a ) + 1 ) 4 tan ( a ) tan ( 2 3 a ) 2/5*a\
1 - tan |---|
\ 2 /
-------------
2/5*a\
1 + tan |---|
\ 2 / 1 − tan 2 ( 5 a 2 ) tan 2 ( 5 a 2 ) + 1 \frac{1 - \tan^{2}{\left(\frac{5 a}{2} \right)}}{\tan^{2}{\left(\frac{5 a}{2} \right)} + 1} tan 2 ( 2 5 a ) + 1 1 − tan 2 ( 2 5 a ) // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | || 2/3*a\ | || | || /3*a\ |
|| 2 | ||1 - tan |---| | || 2*tan(a) | || 2*tan|---| |
|<1 - tan (a) |*|< \ 2 / | - |<----------- otherwise |*|< \ 2 / |
||----------- otherwise | ||------------- otherwise | || 2 | ||------------- otherwise |
|| 2 | || 2/3*a\ | ||1 + tan (a) | || 2/3*a\ |
\\1 + tan (a) / ||1 + tan |---| | \\ / ||1 + tan |---| |
\\ \ 2 / / \\ \ 2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 tan ( a ) tan 2 ( a ) + 1 otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 2 tan ( 3 a 2 ) tan 2 ( 3 a 2 ) + 1 otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 − tan 2 ( a ) tan 2 ( a ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 1 − tan 2 ( 3 a 2 ) tan 2 ( 3 a 2 ) + 1 otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{3 a}{2} \right)}}{\tan^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{3 a}{2} \right)}}{\tan^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) − ( { 0 t a n 2 ( a ) + 1 2 t a n ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ⎩ ⎨ ⎧ 0 t a n 2 ( 2 3 a ) + 1 2 t a n ( 2 3 a ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise + ( { 1 t a n 2 ( a ) + 1 1 − t a n 2 ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ⎩ ⎨ ⎧ 1 t a n 2 ( 2 3 a ) + 1 1 − t a n 2 ( 2 3 a ) for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | ||/ 1 for And(im(a) = 0, 3*a mod 2*pi = 0) | || | ||/ 0 for And(im(a) = 0, 3*a mod pi = 0) |
||/ 1 for And(im(a) = 0, a mod pi = 0) | ||| | ||/ 0 for And(im(a) = 0, 2*a mod pi = 0) | ||| |
||| | ||| 2/3*a\ | ||| | ||| /3*a\ |
|<| 2 |*|<|-1 + cot |---| | - |<| 2*cot(a) |*|<| 2*cot|---| |
||<-1 + cot (a) otherwise | ||< \ 2 / otherwise | ||<----------- otherwise otherwise | ||< \ 2 / otherwise |
|||------------ otherwise | |||-------------- otherwise | ||| 2 | |||------------- otherwise |
||| 2 | ||| 2/3*a\ | |||1 + cot (a) | ||| 2/3*a\ |
\\\1 + cot (a) / |||1 + cot |---| | \\\ / |||1 + cot |---| |
\\\ \ 2 / / \\\ \ 2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 cot ( a ) cot 2 ( a ) + 1 otherwise otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 2 cot ( 3 a 2 ) cot 2 ( 3 a 2 ) + 1 otherwise otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 cot 2 ( 3 a 2 ) − 1 cot 2 ( 3 a 2 ) + 1 otherwise otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) − ⎩ ⎨ ⎧ 0 { 0 c o t 2 ( a ) + 1 2 c o t ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 3 a ) + 1 2 c o t ( 2 3 a ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise + ⎩ ⎨ ⎧ 1 { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 3 a ) + 1 c o t 2 ( 2 3 a ) − 1 for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise 1
-------------
/pi \
csc|-- - 5*a|
\2 / 1 csc ( − 5 a + π 2 ) \frac{1}{\csc{\left(- 5 a + \frac{\pi}{2} \right)}} csc ( − 5 a + 2 π ) 1 // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ || | || |
|< |*|< | - |< / pi\ |*|< / pi\ |
\\cos(2*a) otherwise / \\cos(3*a) otherwise / ||cos|2*a - --| otherwise | ||cos|3*a - --| otherwise |
\\ \ 2 / / \\ \ 2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 cos ( 2 a − π 2 ) otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 cos ( 3 a − π 2 ) otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 cos ( 3 a ) otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\cos{\left(2 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\cos{\left(3 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\cos{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right) ( − ( { 0 cos ( 2 a − 2 π ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 0 cos ( 3 a − 2 π ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise ) ) + ( ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( 3 a ) for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise ) ) 1 sec ( 5 a ) \frac{1}{\sec{\left(5 a \right)}} sec ( 5 a ) 1 // 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|< |*|< | - |< |*|< |
\\cos(2*a) otherwise / \\cos(3*a) otherwise / \\sin(2*a) otherwise / \\sin(3*a) otherwise / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 sin ( 3 a ) otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 cos ( 3 a ) otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\cos{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right) ( − ( { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 0 sin ( 3 a ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise ) ) + ( ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( 3 a ) for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise ) ) / 1 for And(im(a) = 0, 5*a mod 2*pi = 0)
|
| 2/5*a\
|-1 + cot |---|
< \ 2 /
|-------------- otherwise
| 2/5*a\
|1 + cot |---|
\ \ 2 / { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cot 2 ( 5 a 2 ) − 1 cot 2 ( 5 a 2 ) + 1 otherwise \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{5 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{5 a}{2} \right)} + 1} & \text{otherwise} \end{cases} ⎩ ⎨ ⎧ 1 c o t 2 ( 2 5 a ) + 1 c o t 2 ( 2 5 a ) − 1 for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise // 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|| | || | || | || |
| ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 sin ( 3 a ) otherwise otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 cos ( 3 a ) otherwise otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\cos{\left(3 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) − ⎩ ⎨ ⎧ 0 { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ⎩ ⎨ ⎧ 0 { 0 sin ( 3 a ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise + ⎩ ⎨ ⎧ 1 { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 cos ( 3 a ) for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise // 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\
|| | || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|| 1 | || 1 | || | || |
|<------------- otherwise |*|<------------- otherwise | - |< 1 |*|< 1 |
|| /pi \ | || /pi \ | ||-------- otherwise | ||-------- otherwise |
||csc|-- - 2*a| | ||csc|-- - 3*a| | \\csc(2*a) / \\csc(3*a) /
\\ \2 / / \\ \2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 1 csc ( 2 a ) otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 1 csc ( 3 a ) otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( − 2 a + π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 1 csc ( − 3 a + π 2 ) otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\csc{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{1}{\csc{\left(3 a \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 3 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) ( − ( { 0 c s c ( 2 a ) 1 for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 0 c s c ( 3 a ) 1 for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise ) ) + ( ( { 1 c s c ( − 2 a + 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 c s c ( − 3 a + 2 π ) 1 for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise ) ) 1 1
----------------- - -----------------
sec(2*a)*sec(3*a) csc(2*a)*csc(3*a) 1 sec ( 2 a ) sec ( 3 a ) − 1 csc ( 2 a ) csc ( 3 a ) \frac{1}{\sec{\left(2 a \right)} \sec{\left(3 a \right)}} - \frac{1}{\csc{\left(2 a \right)} \csc{\left(3 a \right)}} sec ( 2 a ) sec ( 3 a ) 1 − csc ( 2 a ) csc ( 3 a ) 1 cos ( 5 a ) \cos{\left(5 a \right)} cos ( 5 a ) / 1 for And(im(a) = 0, 5*a mod 2*pi = 0)
<
\cos(5*a) otherwise { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cos ( 5 a ) otherwise \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\cos{\left(5 a \right)} & \text{otherwise} \end{cases} { 1 cos ( 5 a ) for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise 1 1
--------------------------- - -----------------
/pi \ /pi \ csc(2*a)*csc(3*a)
csc|-- - 3*a|*csc|-- - 2*a|
\2 / \2 / 1 csc ( − 3 a + π 2 ) csc ( − 2 a + π 2 ) − 1 csc ( 2 a ) csc ( 3 a ) \frac{1}{\csc{\left(- 3 a + \frac{\pi}{2} \right)} \csc{\left(- 2 a + \frac{\pi}{2} \right)}} - \frac{1}{\csc{\left(2 a \right)} \csc{\left(3 a \right)}} csc ( − 3 a + 2 π ) csc ( − 2 a + 2 π ) 1 − csc ( 2 a ) csc ( 3 a ) 1 // 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\
|| | || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|< /pi \ |*|< /pi \ | - |< |*|< |
||sin|-- + 2*a| otherwise | ||sin|-- + 3*a| otherwise | \\sin(2*a) otherwise / \\sin(3*a) otherwise /
\\ \2 / / \\ \2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 sin ( 3 a ) otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 sin ( 2 a + π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 sin ( 3 a + π 2 ) otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(2 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\sin{\left(3 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) ( − ( { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 0 sin ( 3 a ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise ) ) + ( ( { 1 sin ( 2 a + 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 sin ( 3 a + 2 π ) for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise ) ) /pi \ /pi \
sin|-- + 2*a|*sin|-- + 3*a| - sin(2*a)*sin(3*a)
\2 / \2 / − sin ( 2 a ) sin ( 3 a ) + sin ( 2 a + π 2 ) sin ( 3 a + π 2 ) - \sin{\left(2 a \right)} \sin{\left(3 a \right)} + \sin{\left(2 a + \frac{\pi}{2} \right)} \sin{\left(3 a + \frac{\pi}{2} \right)} − sin ( 2 a ) sin ( 3 a ) + sin ( 2 a + 2 π ) sin ( 3 a + 2 π ) / pi\ / pi\
cos(2*a)*cos(3*a) - cos|2*a - --|*cos|3*a - --|
\ 2 / \ 2 / cos ( 2 a ) cos ( 3 a ) − cos ( 2 a − π 2 ) cos ( 3 a − π 2 ) \cos{\left(2 a \right)} \cos{\left(3 a \right)} - \cos{\left(2 a - \frac{\pi}{2} \right)} \cos{\left(3 a - \frac{\pi}{2} \right)} cos ( 2 a ) cos ( 3 a ) − cos ( 2 a − 2 π ) cos ( 3 a − 2 π ) // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | || 2/3*a\ | || | || /3*a\ |
|| 2 | ||-1 + cot |---| | || 2*cot(a) | || 2*cot|---| |
|<-1 + cot (a) |*|< \ 2 / | - |<----------- otherwise |*|< \ 2 / |
||------------ otherwise | ||-------------- otherwise | || 2 | ||------------- otherwise |
|| 2 | || 2/3*a\ | ||1 + cot (a) | || 2/3*a\ |
\\1 + cot (a) / ||1 + cot |---| | \\ / ||1 + cot |---| |
\\ \ 2 / / \\ \ 2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 cot ( a ) cot 2 ( a ) + 1 otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 2 cot ( 3 a 2 ) cot 2 ( 3 a 2 ) + 1 otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 cot 2 ( 3 a 2 ) − 1 cot 2 ( 3 a 2 ) + 1 otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) − ( { 0 c o t 2 ( a ) + 1 2 c o t ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ⎩ ⎨ ⎧ 0 c o t 2 ( 2 3 a ) + 1 2 c o t ( 2 3 a ) for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise + ( { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ⎩ ⎨ ⎧ 1 c o t 2 ( 2 3 a ) + 1 c o t 2 ( 2 3 a ) − 1 for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise sin ( 5 a + π 2 ) \sin{\left(5 a + \frac{\pi}{2} \right)} sin ( 5 a + 2 π ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ || | || |
|| | || | || 1 | || 1 |
|< 1 |*|< 1 | - |<------------- otherwise |*|<------------- otherwise |
||-------- otherwise | ||-------- otherwise | || / pi\ | || / pi\ |
\\sec(2*a) / \\sec(3*a) / ||sec|2*a - --| | ||sec|3*a - --| |
\\ \ 2 / / \\ \ 2 / / ( − ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 1 sec ( 2 a − π 2 ) otherwise ) ( { 0 for im ( a ) = 0 ∧ 3 a m o d π = 0 1 sec ( 3 a − π 2 ) otherwise ) ) + ( ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( 2 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 3 a m o d 2 π = 0 1 sec ( 3 a ) otherwise ) ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{1}{\sec{\left(3 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(3 a \right)}} & \text{otherwise} \end{cases}\right)\right) ( − ( { 0 s e c ( 2 a − 2 π ) 1 for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 0 s e c ( 3 a − 2 π ) 1 for im ( a ) = 0 ∧ 3 a mod π = 0 otherwise ) ) + ( ( { 1 s e c ( 2 a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 s e c ( 3 a ) 1 for im ( a ) = 0 ∧ 3 a mod 2 π = 0 otherwise ) ) 1 1
----------------- - ---------------------------
sec(2*a)*sec(3*a) / pi\ / pi\
sec|2*a - --|*sec|3*a - --|
\ 2 / \ 2 / − 1 sec ( 2 a − π 2 ) sec ( 3 a − π 2 ) + 1 sec ( 2 a ) sec ( 3 a ) - \frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)} \sec{\left(3 a - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(2 a \right)} \sec{\left(3 a \right)}} − sec ( 2 a − 2 π ) sec ( 3 a − 2 π ) 1 + sec ( 2 a ) sec ( 3 a ) 1