Разложить многочлен на множители x^2-10*x+24

Учитель очень удивится увидев твоё верное решение 😼

Решение

Разложение на множители [src]
(x - 4)*(x - 6)
(x6)(x4)\left(x - 6\right) \left(x - 4\right)
Комбинаторика [src]
(-6 + x)*(-4 + x)
(x6)(x4)\left(x - 6\right) \left(x - 4\right)
Объединение рациональных выражений [src]
24 + x*(-10 + x)
x(x10)+24x \left(x - 10\right) + 24
Выделение полного квадрата
Выделим полный квадрат из квадратного трёхчлена
(x210x)+24\left(x^{2} - 10 x\right) + 24
Для этого воспользуемся формулой
ax2+bx+c=a(m+x)2+na x^{2} + b x + c = a \left(m + x\right)^{2} + n
где
m=b2am = \frac{b}{2 a}
n=4acb24an = \frac{4 a c - b^{2}}{4 a}
В нашем случае
a=1a = 1
b=10b = -10
c=24c = 24
Тогда
m=5m = -5
n=1n = -1
Итак,
(x5)21\left(x - 5\right)^{2} - 1