sin(165)+cos(195*c)*tan(255)еслиc=-1/4 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
sin(165) + cos(195*c)*tan(255)
$$\cos{\left(195 c \right)} \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
Подстановка условия [src]
sin(165) + cos(195*c)*tan(255) при c = -1/4
подставляем
sin(165) + cos(195*c)*tan(255)
$$\cos{\left(195 c \right)} \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
cos(195*c)*tan(255) + sin(165)
$$\cos{\left(195 c \right)} \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
переменные
c = -1/4
$$c = - \frac{1}{4}$$
cos(195*(-1/4))*tan(255) + sin(165)
$$\cos{\left(195 (-1/4) \right)} \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
cos(195/4)*tan(255) + sin(165)
$$\cos{\left(\frac{195}{4} \right)} \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
Степени [src]
                             / -195*I*c    195*I*c\                     
                             |e           e       | /   255*I    -255*I\
    /   -165*I    165*I\   I*|--------- + --------|*\- e      + e      /
  I*\- e       + e     /     \    2          2    /                     
- ---------------------- + ---------------------------------------------
            2                              -255*I    255*I              
                                          e       + e                   
$$\frac{i \left(e^{- 255 i} - e^{255 i}\right) \left(\frac{e^{195 i c}}{2} + \frac{e^{- 195 i c}}{2}\right)}{e^{255 i} + e^{- 255 i}} - \frac{i \left(e^{165 i} - e^{- 165 i}\right)}{2}$$
Численный ответ [src]
0.997797279449891 + 0.58725445460932*cos(195*c)
Тригонометрическая часть [src]
//    1       for And(im(c) = 0, 195*c mod 2*pi = 0)\                    
|<                                                  |*tan(255) + sin(165)
\\cos(195*c)                otherwise               /                    
$$\left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases}\right) \tan{\left(255 \right)}\right) + \sin{\left(165 \right)}$$
/                            1                              for And(im(c) = 0, 195*c mod 2*pi = 0)                  
|                                                                                                                   
|/       1          for And(im(c) = 0, 195*c mod 2*pi = 0)                                                          
||                                                                                                                  
||        2/195*c\                                                                                                  
<|-1 + cot |-----|                                                                                                  
|<         \  2  /                                                        otherwise                                 
||----------------                otherwise                                                                         
||       2/195*c\                                                                                                   
||1 + cot |-----|                                                                                                   
\\        \  2  /                                                                                      2*cot(165/2) 
-------------------------------------------------------------------------------------------------- + ---------------
                                             cot(255)                                                       2       
                                                                                                     1 + cot (165/2)
$$\left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{195 c}{2} \right)} - 1}{\cot^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}}{\cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
cos(195*c)*sin(255)           
------------------- + sin(165)
      cos(255)                
$$\frac{\sin{\left(255 \right)} \cos{\left(195 c \right)}}{\cos{\left(255 \right)}} + \sin{\left(165 \right)}$$
     2         /pi        \           
2*sin (255)*sin|-- + 195*c|           
               \2         /           
--------------------------- + sin(165)
          sin(510)                    
$$\frac{2 \sin^{2}{\left(255 \right)} \sin{\left(195 c + \frac{\pi}{2} \right)}}{\sin{\left(510 \right)}} + \sin{\left(165 \right)}$$
                /            2         \         
                |1 - ------------------|*sec(255)
                |       2/  pi   195*c\|         
                |    sec |- -- + -----||         
      1         \        \  2      2  //         
------------- + ---------------------------------
   /      pi\                /      pi\          
sec|165 - --|             sec|255 - --|          
   \      2 /                \      2 /          
$$\frac{\left(1 - \frac{2}{\sec^{2}{\left(\frac{195 c}{2} - \frac{\pi}{2} \right)}}\right) \sec{\left(255 \right)}}{\sec{\left(255 - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}}$$
     2                                    
2*sin (255)*cos(195*c)*csc(510) + sin(165)
$$2 \sin^{2}{\left(255 \right)} \cos{\left(195 c \right)} \csc{\left(510 \right)} + \sin{\left(165 \right)}$$
                                                //       1          for And(im(c) = 0, 195*c mod 2*pi = 0)\
                                                ||                                                        |
                                                ||        2/195*c\                                        |
                       2        /       2     \ ||-1 + cot |-----|                                        |
                  4*cot (255/2)*\1 + cot (255)/*|<         \  2  /                                        |
                                                ||----------------                otherwise               |
                                                ||       2/195*c\                                         |
                                                ||1 + cot |-----|                                         |
  2*cot(165/2)                                  \\        \  2  /                                         /
--------------- + -----------------------------------------------------------------------------------------
       2                                                          2                                        
1 + cot (165/2)                                  /       2       \                                         
                                                 \1 + cot (255/2)/ *cot(255)                               
$$\left(\frac{4 \cdot \left(1 + \cot^{2}{\left(255 \right)}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{195 c}{2} \right)} - 1}{\cot^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \cot^{2}{\left(\frac{255}{2} \right)}}{\left(\cot^{2}{\left(\frac{255}{2} \right)} + 1\right)^{2} \cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
           /         2     \    /       pi\
           |1 - -----------|*csc|-255 + --|
           |       2/195*c\|    \       2 /
           |    csc |-----||               
   1       \        \  2  //               
-------- + --------------------------------
csc(165)               csc(255)            
$$\frac{\left(1 - \frac{2}{\csc^{2}{\left(\frac{195 c}{2} \right)}}\right) \csc{\left(-255 + \frac{\pi}{2} \right)}}{\csc{\left(255 \right)}} + \frac{1}{\csc{\left(165 \right)}}$$
                          /      pi\     
                     2*sec|510 - --|     
      1                   \      2 /     
------------- + -------------------------
   /      pi\                 2/      pi\
sec|165 - --|   sec(195*c)*sec |255 - --|
   \      2 /                  \      2 /
$$\frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}} + \frac{2 \sec{\left(510 - \frac{\pi}{2} \right)}}{\sec{\left(195 c \right)} \sec^{2}{\left(255 - \frac{\pi}{2} \right)}}$$
/           2/195*c\   \                           
|      8*tan |-----|   |                           
|            \  4  /   |              2*tan(165/2) 
|1 - ------------------|*tan(255) + ---------------
|                     2|                   2       
|    /       2/195*c\\ |            1 + tan (165/2)
|    |1 + tan |-----|| |                           
\    \        \  4  // /                           
$$\left(1 - \frac{8 \tan^{2}{\left(\frac{195 c}{4} \right)}}{\left(\tan^{2}{\left(\frac{195 c}{4} \right)} + 1\right)^{2}}\right) \tan{\left(255 \right)} + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
            //       1         for And(im(c) = 0, 195*c mod 2*pi = 0)\           
     2      ||                                                       |           
2*sin (255)*|<   /pi        \                                        |           
            ||sin|-- + 195*c|                otherwise               |           
            \\   \2         /                                        /           
---------------------------------------------------------------------- + sin(165)
                               sin(510)                                          
$$\left(\frac{2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\sin{\left(195 c + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \sin^{2}{\left(255 \right)}}{\sin{\left(510 \right)}}\right) + \sin{\left(165 \right)}$$
/      //                       /           195*c           \\\                    
|      ||      0         for And|im(c) = 0, ----- mod pi = 0|||                    
|      ||                       \             2             /||                    
|1 - 2*|<                                                    ||*tan(255) + sin(165)
|      ||1 - cos(195*c)                                      ||                    
|      ||--------------               otherwise              ||                    
\      \\      2                                             //                    
$$\left(\left(1 - \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge \frac{195 c}{2} \bmod \pi = 0 \\\frac{1 - \cos{\left(195 c \right)}}{2} & \text{otherwise} \end{cases}\right)\right)\right) \tan{\left(255 \right)}\right) + \sin{\left(165 \right)}$$
//       1         for And(im(c) = 0, 195*c mod 2*pi = 0)\                           
||                                                       |                           
||       2/195*c\                                        |                           
||1 - tan |-----|                                        |              2*tan(165/2) 
|<        \  2  /                                        |*tan(255) + ---------------
||---------------                otherwise               |                   2       
||       2/195*c\                                        |            1 + tan (165/2)
||1 + tan |-----|                                        |                           
\\        \  2  /                                        /                           
$$\left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{195 c}{2} \right)}}{\tan^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \tan{\left(255 \right)}\right) + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
                   /       pi\     
                csc|-255 + --|     
   1               \       2 /     
-------- + ------------------------
csc(165)               /pi        \
           csc(255)*csc|-- - 195*c|
                       \2         /
$$\frac{1}{\csc{\left(165 \right)}} + \frac{\csc{\left(-255 + \frac{\pi}{2} \right)}}{\csc{\left(255 \right)} \csc{\left(- 195 c + \frac{\pi}{2} \right)}}$$
     2                           
2*sin (255)*cos(195*c)           
---------------------- + sin(165)
       sin(510)                  
$$\frac{2 \sin^{2}{\left(255 \right)} \cos{\left(195 c \right)}}{\sin{\left(510 \right)}} + \sin{\left(165 \right)}$$
           //       1         for And(im(c) = 0, 195*c mod 2*pi = 0)\               
           ||                                                       |               
           ||       1                                               |    /       pi\
           |<---------------                otherwise               |*csc|-255 + --|
           ||   /pi        \                                        |    \       2 /
           ||csc|-- - 195*c|                                        |               
   1       \\   \2         /                                        /               
-------- + -------------------------------------------------------------------------
csc(165)                                    csc(255)                                
$$\left(\frac{\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 195 c + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \csc{\left(-255 + \frac{\pi}{2} \right)}}{\csc{\left(255 \right)}}\right) + \frac{1}{\csc{\left(165 \right)}}$$
     2/      pi\                           
2*cos |255 - --|*cos(195*c)                
      \      2 /                 /      pi\
--------------------------- + cos|165 - --|
          /      pi\             \      2 /
       cos|510 - --|                       
          \      2 /                       
$$\frac{2 \cos{\left(195 c \right)} \cos^{2}{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(510 - \frac{\pi}{2} \right)}} + \cos{\left(165 - \frac{\pi}{2} \right)}$$
/         2/195*c\\                    
|1 - 2*sin |-----||*tan(255) + sin(165)
\          \  2  //                    
$$\left(1 - 2 \sin^{2}{\left(\frac{195 c}{2} \right)}\right) \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
     2      //    1       for And(im(c) = 0, 195*c mod 2*pi = 0)\           
2*sin (255)*|<                                                  |           
            \\cos(195*c)                otherwise               /           
----------------------------------------------------------------- + sin(165)
                             sin(510)                                       
$$\left(\frac{2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases}\right) \sin^{2}{\left(255 \right)}}{\sin{\left(510 \right)}}\right) + \sin{\left(165 \right)}$$
   1               2*csc(510)       
-------- + -------------------------
csc(165)      2         /pi        \
           csc (255)*csc|-- - 195*c|
                        \2         /
$$\frac{1}{\csc{\left(165 \right)}} + \frac{2 \csc{\left(510 \right)}}{\csc^{2}{\left(255 \right)} \csc{\left(- 195 c + \frac{\pi}{2} \right)}}$$
//                         1                           for And(im(c) = 0, 195*c mod 2*pi = 0)\                    
||                                                                                           |                    
|
$$\left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \tan{\left(255 \right)}\right) + \sin{\left(165 \right)}$$
                  /       2/195*c\\         
                  |1 - tan |-----||*tan(255)
  2*tan(165/2)    \        \  2  //         
--------------- + --------------------------
       2                      2/195*c\      
1 + tan (165/2)        1 + tan |-----|      
                               \  2  /      
$$\frac{\left(1 - \tan^{2}{\left(\frac{195 c}{2} \right)}\right) \tan{\left(255 \right)}}{\tan^{2}{\left(\frac{195 c}{2} \right)} + 1} + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
/       1          for And(im(c) = 0, 195*c mod 2*pi = 0)                  
|                                                                          
|        2/195*c\                                                          
|-1 + cot |-----|                                                          
<         \  2  /                                                          
|----------------                otherwise                                 
|       2/195*c\                                                           
|1 + cot |-----|                                                           
\        \  2  /                                              2*cot(165/2) 
--------------------------------------------------------- + ---------------
                         cot(255)                                  2       
                                                            1 + cot (165/2)
$$\left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{195 c}{2} \right)} - 1}{\cot^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases}}{\cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
     2      /         2/195*c\\           
2*sin (255)*|1 - 2*sin |-----||           
            \          \  2  //           
------------------------------- + sin(165)
            sin(510)                      
$$\frac{2 \cdot \left(1 - 2 \sin^{2}{\left(\frac{195 c}{2} \right)}\right) \sin^{2}{\left(255 \right)}}{\sin{\left(510 \right)}} + \sin{\left(165 \right)}$$
              /      pi\                
cos(195*c)*cos|255 - --|                
              \      2 /      /      pi\
------------------------ + cos|165 - --|
        cos(255)              \      2 /
$$\frac{\cos{\left(195 c \right)} \cos{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(255 \right)}} + \cos{\left(165 - \frac{\pi}{2} \right)}$$
/         2/  pi   195*c\\    /      pi\                
|1 - 2*cos |- -- + -----||*cos|255 - --|                
\          \  2      2  //    \      2 /      /      pi\
---------------------------------------- + cos|165 - --|
                cos(255)                      \      2 /
$$\frac{\left(1 - 2 \cos^{2}{\left(\frac{195 c}{2} - \frac{\pi}{2} \right)}\right) \cos{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(255 \right)}} + \cos{\left(165 - \frac{\pi}{2} \right)}$$
      1                 sec(255)        
------------- + ------------------------
   /      pi\                 /      pi\
sec|165 - --|   sec(195*c)*sec|255 - --|
   \      2 /                 \      2 /
$$\frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}} + \frac{\sec{\left(255 \right)}}{\sec{\left(195 c \right)} \sec{\left(255 - \frac{\pi}{2} \right)}}$$
   1             sec(255)     
-------- + -------------------
csc(165)   csc(255)*sec(195*c)
$$\frac{1}{\csc{\left(165 \right)}} + \frac{\sec{\left(255 \right)}}{\csc{\left(255 \right)} \sec{\left(195 c \right)}}$$
                       2        /       2     \ /       2/195*c\\
                  4*tan (255/2)*\1 + tan (255)/*|1 - tan |-----||
  2*tan(165/2)                                  \        \  2  //
--------------- + -----------------------------------------------
       2                            2                            
1 + tan (165/2)    /       2       \  /       2/195*c\\          
                   \1 + tan (255/2)/ *|1 + tan |-----||*tan(255) 
                                      \        \  2  //          
$$\frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{195 c}{2} \right)}\right) \left(\tan^{2}{\left(255 \right)} + 1\right) \tan^{2}{\left(\frac{255}{2} \right)}}{\left(1 + \tan^{2}{\left(\frac{255}{2} \right)}\right)^{2} \left(\tan^{2}{\left(\frac{195 c}{2} \right)} + 1\right) \tan{\left(255 \right)}} + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
                //    1       for And(im(c) = 0, 195*c mod 2*pi = 0)\         
                ||                                                  |         
                |<    1                                             |*sec(255)
                ||----------                otherwise               |         
      1         \\sec(195*c)                                        /         
------------- + --------------------------------------------------------------
   /      pi\                              /      pi\                         
sec|165 - --|                           sec|255 - --|                         
   \      2 /                              \      2 /                         
$$\left(\frac{\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(195 c \right)}} & \text{otherwise} \end{cases}\right) \sec{\left(255 \right)}}{\sec{\left(255 - \frac{\pi}{2} \right)}}\right) + \frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}}$$
      //                           /           195*c           \\                  
      ||        0           for And|im(c) = 0, ----- mod pi = 0||                  
      ||                           \             2             /|                  
      ||                                                        |                  
      ||       2/195*c\                                         |                  
      ||  4*cot |-----|                                         |                  
1 - 2*|<        \  4  /                                         |                  
      ||------------------               otherwise              |                  
      ||                 2                                      |                  
      ||/       2/195*c\\                                       |                  
      |||1 + cot |-----||                                       |                  
      ||\        \  4  //                                       |                  
      \\                                                        /     2*cot(165/2) 
----------------------------------------------------------------- + ---------------
                             cot(255)                                      2       
                                                                    1 + cot (165/2)
$$\left(\frac{1 - \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge \frac{195 c}{2} \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{195 c}{4} \right)}}{\left(\cot^{2}{\left(\frac{195 c}{4} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right)}{\cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
//    1       for And(im(c) = 0, 195*c mod 2*pi = 0)\    /      pi\                
|<                                                  |*cos|255 - --|                
\\cos(195*c)                otherwise               /    \      2 /      /      pi\
------------------------------------------------------------------- + cos|165 - --|
                              cos(255)                                   \      2 /
$$\left(\frac{\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases}\right) \cos{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(255 \right)}}\right) + \cos{\left(165 - \frac{\pi}{2} \right)}$$
     4           2/195*c\    2        /       2     \ /       2/195*c\\           
4*cos (255/2)*cos |-----|*tan (255/2)*\1 + tan (255)/*|1 - tan |-----||           
                  \  2  /                             \        \  2  //           
----------------------------------------------------------------------- + sin(165)
                                tan(255)                                          
$$\frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{195 c}{2} \right)}\right) \left(\tan^{2}{\left(255 \right)} + 1\right) \cos^{4}{\left(\frac{255}{2} \right)} \cos^{2}{\left(\frac{195 c}{2} \right)} \tan^{2}{\left(\frac{255}{2} \right)}}{\tan{\left(255 \right)}} + \sin{\left(165 \right)}$$
Раскрыть выражение [src]
                                                                                137                                                                                             141                                                                                             133                                                                                             145                                                                                             129                                                                                            149                                                                                            125                                                                                            153                                                                                            121                                                                                            157                                                                                           117                                                                                           161                                                                                           113                                                                                          165                                                                                          109                                                                                          105                                                                                         169                                                                                         101                                                                                        173                                                                                        97                                                                                       177                                                                                       93                                                                                      181                                                                                      89                                                                                     85                                                                                    185                                                                                   81                                                                                  189                                                                                  77                                                                                73                                                                                193                                                                               69                                                                             65                                                                           61                                                                         57                                                                       53                                                                     49                                                                  45                                                                41                                                             37                                                          33                                                       29                                                    25                                                21                                            17                                       13                                   9                             5                                                3                                7                                     11                                          15                                              19                                                  23                                                     27                                                         31                                                            35                                                              39                                                                 43                                                                    47                                                                      51                                                                        55                                                                          59                                                                            63                                                                              67                                                                              195                                                                               71                                                                                 191                                                                                 75                                                                                   79                                                                                   187                                                                                    83                                                                                     183                                                                                     87                                                                                      91                                                                                       179                                                                                       95                                                                                        175                                                                                        99                                                                                         171                                                                                         103                                                                                          107                                                                                          167                                                                                           111                                                                                           163                                                                                           115                                                                                           159                                                                                            119                                                                                            155                                                                                            123                                                                                            151                                                                                            127                                                                                             147                                                                                             131                                                                                             143                                                                                             135                                                                                             139                       
- 20787375589216773023881289351494260687724866629768661443647937838474854400*cos   (c)*tan(255) - 19772391411799335010464835604492205471906690097146876785264478415403089920*cos   (c)*tan(255) - 17400710512846825582748952333212318077183238127685740849999044224997130240*cos   (c)*tan(255) - 14871590011845292585556561768274344061769828563862266564189917554950537216*cos   (c)*tan(255) - 11660594214055556584166048183060481141134845811210912697350784143274803200*cos   (c)*tan(255) - 8769109527820868882554909618995154855735533002284859702005104428187648000*cos   (c)*tan(255) - 6281767026232552618434531627503539506090279906195160557129269527122542592*cos   (c)*tan(255) - 4010488902666332962954390176566932764438031033505637905556098570224926720*cos   (c)*tan(255) - 2728978078591541055885161445994766941865842724706231972853048047304704000*cos   (c)*tan(255) - 1403709435587348950295610723585420897146767454516679900447663961669632000*cos   (c)*tan(255) - 958083134253511673049704381696741885212642306316024622949487964323840000*cos   (c)*tan(255) - 369750842408219227285535578162603683378338703700882189140373973395046400*cos   (c)*tan(255) - 272165760272778263793475786901114923752786651637425408741598304403456000*cos   (c)*tan(255) - 71753101975368097596979696239508176197626046386809382342693442300149760*cos   (c)*tan(255) - 62585376720512961546936349086053193866021126308273693677624817090560000*cos   (c)*tan(255) - 11645533467983492335238316642897000362175928053904272346837244675358720*cos   (c)*tan(255) - 9979539298920484914720065124544564740279147662964153720327018381312000*cos   (c)*tan(255) - 1751442026660558567658396266230313164047839553605619198721420532121600*cos   (c)*tan(255) - 959086923352075372693998282278540451452555178389161930759805180313600*cos   (c)*tan(255) - 212496078638248769118290275958148186903431400271683993414905364480000*cos  (c)*tan(255) - 60574098264088847488248219325487771872839568937439485167058655641600*cos   (c)*tan(255) - 20742193855897843846963513628319533578726765069792133416263824179200*cos  (c)*tan(255) - 2338136568450379602739853812471383039669187611111060285137816125440*cos   (c)*tan(255) - 1623251409936942226903182142239917578541523813315458928149004288000*cos  (c)*tan(255) - 101403417330311639743552777041659784205377652467178643601689149440*cos  (c)*tan(255) - 49243257202151545200618505735249936453679196019221178289775181824*cos   (c)*tan(255) - 5029976958915583783663233919132194395569330496311261955253862400*cos  (c)*tan(255) - 462710669641152247492939121279168872675720035630437119085772800*cos   (c)*tan(255) - 196880739584031068861559720550867778860856031200059343241216000*cos  (c)*tan(255) - 6036162150553689764148910067795711638481656961600474578944000*cos  (c)*tan(255) - 1224034838400402748947978937525494951139959311670486730014720*cos   (c)*tan(255) - 143712600904386029441197389006723064177353335832135598080000*cos  (c)*tan(255) - 2630532245015356670594269106420677926348570456410711654400*cos  (c)*tan(255) - 36587336818755330613119818862279178385766647360126976000*cos  (c)*tan(255) - 381451772164020639066329206299154674010223101870080000*cos  (c)*tan(255) - 2933937778720902043959058216010172410867363421880320*cos  (c)*tan(255) - 16339170763466838170027103734289745597427613696000*cos  (c)*tan(255) - 64438205358504575312945101459429196228884168704*cos  (c)*tan(255) - 175256084240754737522229511639886020560814080*cos  (c)*tan(255) - 318331509081308363201735119138320914841600*cos  (c)*tan(255) - 371221510955642618859977468844294799360*cos  (c)*tan(255) - 264527974945061117078146739129548800*cos  (c)*tan(255) - 108101293417713587012351482134528*cos  (c)*tan(255) - 23288671638539304996385587200*cos  (c)*tan(255) - 2353627932696062410752000*cos  (c)*tan(255) - 93950584333223116800*cos  (c)*tan(255) - 1120956124288000*cos (c)*tan(255) - 2348970624*cos (c)*tan(255) - 195*cos(c)*tan(255) + 1235780*cos (c)*tan(255) + 2125259136000*cos (c)*tan(255) + 386668719818035200*cos  (c)*tan(255) + 16936158669135687188480*cos  (c)*tan(255) + 259697379146838044246016000*cos  (c)*tan(255) + 1729805207238856203525999820800*cos  (c)*tan(255) + 5759242697752832128578269845913600*cos  (c)*tan(255) + 10576567978878658685412697148164669440*cos  (c)*tan(255) + 11522216578703878798497586377506615721984*cos  (c)*tan(255) + 7873657082917975277680703459604785056972800*cos  (c)*tan(255) + 3526858873558134097734169086954605499037777920*cos  (c)*tan(255) + 1072976592463535944156347665374399197150707712000*cos  (c)*tan(255) + 228261419324604958027076683698171724377553455022080*cos  (c)*tan(255) + 34788401621358682282849223614482906269732346890551296*cos  (c)*tan(255) + 3876495274335470994789790905394331660835627875696640000*cos  (c)*tan(255) + 321324117314537342896175695404921898449907596272861184000*cos  (c)*tan(255) + 20106736743898474777495770193807985958973695483193589760000*cos  (c)*tan(255) + 25108406941546723055343157692830665664409421777856138051584*cos   (c)*tan(255) + 961862365489637199865591538816828170381384580104659664896000*cos  (c)*tan(255) + 29376836121609665974751494500611878827359023480091681520353280*cos   (c)*tan(255) + 35560064445856475770921218662459204996720046129097138168135680*cos  (c)*tan(255) + 1025492407933959945826131254592770566426166046315661259440128000*cos  (c)*tan(255) + 5379919997935020176020652112988032848139294602755461948742041600*cos   (c)*tan(255) + 23253481492112831056300322073402198716161242247419563056142745600*cos  (c)*tan(255) + 369541550961472354195117710588163103369320950726254168647254671360*cos   (c)*tan(255) + 417431870325260425568220466838161100444484321837623927149428736000*cos  (c)*tan(255) + 5966588576891539535859999415139252598829552243717774795237805260800*cos  (c)*tan(255) + 12730028308842474508232693384077148969321880409424856966876679372800*cos   (c)*tan(255) + 68233223595840432345845484473181928153267351701031770575158577725440*cos  (c)*tan(255) + 255000582313904834723501152490215549916580844802583086746515032506368*cos   (c)*tan(255) + 626756110730996369520613743230093642179817867467997233102549155840000*cos  (c)*tan(255) + 3248928789989111428720698188465420044788505451747256649782418368102400*cos   (c)*tan(255) + 4638503992937690994339160261906742192696277150154459221894613067366400*cos   (c)*tan(255) + 27722571295675744405875026393777024314825432679899078942391606968320000*cos   (c)*tan(255) + 27953737152224783711398193470409360902328883232722795227656344305664000*cos   (c)*tan(255) + 134007542095093437074783285053708001673485366601433861384752106307584000*cos   (c)*tan(255) + 169486639267934769638117194504285199712618786245379005428883078617497600*cos   (c)*tan(255) + 524318721697123404299620478564039551052660539569398636398002042411417600*cos   (c)*tan(255) + 747393416543920848624874175570360238843848478290546546787196606611456000*cos   (c)*tan(255) + 1660440902662972516403475703815119678004191936085085829945786860830720000*cos   (c)*tan(255) + 2455689392600382177902864131575294900922759178287323151554584696372330496*cos   (c)*tan(255) + 4252593855110262298468520275432602303651263912736940454031432462893056000*cos   (c)*tan(255) + 6126374797714676785763747894524473749984948089543294477904140064973127680*cos   (c)*tan(255) + 8793374664892462108044838673670746465218239588724634200705889101833830400*cos   (c)*tan(255) + 11779751663468920601736163920448413430718809318127785462269527464083456000*cos   (c)*tan(255) + 14641817185752438167692705481301546020083825180677284622439763248372776960*cos   (c)*tan(255) + 17667205248482573349250171240416949477113906486882346714854658542749614080*cos   (c)*tan(255) + 19561130402943783584896776929143488138065137123527762627174160495275933696*cos   (c)*tan(255) + 20867568780416962847870822007735037212117090596539742714987211501286195200*cos   (c)*tan(255) + sin(165)
$$25108406941546723055343157692830665664409421777856138051584 \cos^{195}{\left(c \right)} \tan{\left(255 \right)} - 1224034838400402748947978937525494951139959311670486730014720 \cos^{193}{\left(c \right)} \tan{\left(255 \right)} + 29376836121609665974751494500611878827359023480091681520353280 \cos^{191}{\left(c \right)} \tan{\left(255 \right)} - 462710669641152247492939121279168872675720035630437119085772800 \cos^{189}{\left(c \right)} \tan{\left(255 \right)} + 5379919997935020176020652112988032848139294602755461948742041600 \cos^{187}{\left(c \right)} \tan{\left(255 \right)} - 49243257202151545200618505735249936453679196019221178289775181824 \cos^{185}{\left(c \right)} \tan{\left(255 \right)} + 369541550961472354195117710588163103369320950726254168647254671360 \cos^{183}{\left(c \right)} \tan{\left(255 \right)} - 2338136568450379602739853812471383039669187611111060285137816125440 \cos^{181}{\left(c \right)} \tan{\left(255 \right)} + 12730028308842474508232693384077148969321880409424856966876679372800 \cos^{179}{\left(c \right)} \tan{\left(255 \right)} - 60574098264088847488248219325487771872839568937439485167058655641600 \cos^{177}{\left(c \right)} \tan{\left(255 \right)} + 255000582313904834723501152490215549916580844802583086746515032506368 \cos^{175}{\left(c \right)} \tan{\left(255 \right)} - 959086923352075372693998282278540451452555178389161930759805180313600 \cos^{173}{\left(c \right)} \tan{\left(255 \right)} + 3248928789989111428720698188465420044788505451747256649782418368102400 \cos^{171}{\left(c \right)} \tan{\left(255 \right)} - 9979539298920484914720065124544564740279147662964153720327018381312000 \cos^{169}{\left(c \right)} \tan{\left(255 \right)} + 27953737152224783711398193470409360902328883232722795227656344305664000 \cos^{167}{\left(c \right)} \tan{\left(255 \right)} - 71753101975368097596979696239508176197626046386809382342693442300149760 \cos^{165}{\left(c \right)} \tan{\left(255 \right)} + 169486639267934769638117194504285199712618786245379005428883078617497600 \cos^{163}{\left(c \right)} \tan{\left(255 \right)} - 369750842408219227285535578162603683378338703700882189140373973395046400 \cos^{161}{\left(c \right)} \tan{\left(255 \right)} + 747393416543920848624874175570360238843848478290546546787196606611456000 \cos^{159}{\left(c \right)} \tan{\left(255 \right)} - 1403709435587348950295610723585420897146767454516679900447663961669632000 \cos^{157}{\left(c \right)} \tan{\left(255 \right)} + 2455689392600382177902864131575294900922759178287323151554584696372330496 \cos^{155}{\left(c \right)} \tan{\left(255 \right)} - 4010488902666332962954390176566932764438031033505637905556098570224926720 \cos^{153}{\left(c \right)} \tan{\left(255 \right)} + 6126374797714676785763747894524473749984948089543294477904140064973127680 \cos^{151}{\left(c \right)} \tan{\left(255 \right)} - 8769109527820868882554909618995154855735533002284859702005104428187648000 \cos^{149}{\left(c \right)} \tan{\left(255 \right)} + 11779751663468920601736163920448413430718809318127785462269527464083456000 \cos^{147}{\left(c \right)} \tan{\left(255 \right)} - 14871590011845292585556561768274344061769828563862266564189917554950537216 \cos^{145}{\left(c \right)} \tan{\left(255 \right)} + 17667205248482573349250171240416949477113906486882346714854658542749614080 \cos^{143}{\left(c \right)} \tan{\left(255 \right)} - 19772391411799335010464835604492205471906690097146876785264478415403089920 \cos^{141}{\left(c \right)} \tan{\left(255 \right)} + 20867568780416962847870822007735037212117090596539742714987211501286195200 \cos^{139}{\left(c \right)} \tan{\left(255 \right)} - 20787375589216773023881289351494260687724866629768661443647937838474854400 \cos^{137}{\left(c \right)} \tan{\left(255 \right)} + 19561130402943783584896776929143488138065137123527762627174160495275933696 \cos^{135}{\left(c \right)} \tan{\left(255 \right)} - 17400710512846825582748952333212318077183238127685740849999044224997130240 \cos^{133}{\left(c \right)} \tan{\left(255 \right)} + 14641817185752438167692705481301546020083825180677284622439763248372776960 \cos^{131}{\left(c \right)} \tan{\left(255 \right)} - 11660594214055556584166048183060481141134845811210912697350784143274803200 \cos^{129}{\left(c \right)} \tan{\left(255 \right)} + 8793374664892462108044838673670746465218239588724634200705889101833830400 \cos^{127}{\left(c \right)} \tan{\left(255 \right)} - 6281767026232552618434531627503539506090279906195160557129269527122542592 \cos^{125}{\left(c \right)} \tan{\left(255 \right)} + 4252593855110262298468520275432602303651263912736940454031432462893056000 \cos^{123}{\left(c \right)} \tan{\left(255 \right)} - 2728978078591541055885161445994766941865842724706231972853048047304704000 \cos^{121}{\left(c \right)} \tan{\left(255 \right)} + 1660440902662972516403475703815119678004191936085085829945786860830720000 \cos^{119}{\left(c \right)} \tan{\left(255 \right)} - 958083134253511673049704381696741885212642306316024622949487964323840000 \cos^{117}{\left(c \right)} \tan{\left(255 \right)} + 524318721697123404299620478564039551052660539569398636398002042411417600 \cos^{115}{\left(c \right)} \tan{\left(255 \right)} - 272165760272778263793475786901114923752786651637425408741598304403456000 \cos^{113}{\left(c \right)} \tan{\left(255 \right)} + 134007542095093437074783285053708001673485366601433861384752106307584000 \cos^{111}{\left(c \right)} \tan{\left(255 \right)} - 62585376720512961546936349086053193866021126308273693677624817090560000 \cos^{109}{\left(c \right)} \tan{\left(255 \right)} + 27722571295675744405875026393777024314825432679899078942391606968320000 \cos^{107}{\left(c \right)} \tan{\left(255 \right)} - 11645533467983492335238316642897000362175928053904272346837244675358720 \cos^{105}{\left(c \right)} \tan{\left(255 \right)} + 4638503992937690994339160261906742192696277150154459221894613067366400 \cos^{103}{\left(c \right)} \tan{\left(255 \right)} - 1751442026660558567658396266230313164047839553605619198721420532121600 \cos^{101}{\left(c \right)} \tan{\left(255 \right)} + 626756110730996369520613743230093642179817867467997233102549155840000 \cos^{99}{\left(c \right)} \tan{\left(255 \right)} - 212496078638248769118290275958148186903431400271683993414905364480000 \cos^{97}{\left(c \right)} \tan{\left(255 \right)} + 68233223595840432345845484473181928153267351701031770575158577725440 \cos^{95}{\left(c \right)} \tan{\left(255 \right)} - 20742193855897843846963513628319533578726765069792133416263824179200 \cos^{93}{\left(c \right)} \tan{\left(255 \right)} + 5966588576891539535859999415139252598829552243717774795237805260800 \cos^{91}{\left(c \right)} \tan{\left(255 \right)} - 1623251409936942226903182142239917578541523813315458928149004288000 \cos^{89}{\left(c \right)} \tan{\left(255 \right)} + 417431870325260425568220466838161100444484321837623927149428736000 \cos^{87}{\left(c \right)} \tan{\left(255 \right)} - 101403417330311639743552777041659784205377652467178643601689149440 \cos^{85}{\left(c \right)} \tan{\left(255 \right)} + 23253481492112831056300322073402198716161242247419563056142745600 \cos^{83}{\left(c \right)} \tan{\left(255 \right)} - 5029976958915583783663233919132194395569330496311261955253862400 \cos^{81}{\left(c \right)} \tan{\left(255 \right)} + 1025492407933959945826131254592770566426166046315661259440128000 \cos^{79}{\left(c \right)} \tan{\left(255 \right)} - 196880739584031068861559720550867778860856031200059343241216000 \cos^{77}{\left(c \right)} \tan{\left(255 \right)} + 35560064445856475770921218662459204996720046129097138168135680 \cos^{75}{\left(c \right)} \tan{\left(255 \right)} - 6036162150553689764148910067795711638481656961600474578944000 \cos^{73}{\left(c \right)} \tan{\left(255 \right)} + 961862365489637199865591538816828170381384580104659664896000 \cos^{71}{\left(c \right)} \tan{\left(255 \right)} - 143712600904386029441197389006723064177353335832135598080000 \cos^{69}{\left(c \right)} \tan{\left(255 \right)} + 20106736743898474777495770193807985958973695483193589760000 \cos^{67}{\left(c \right)} \tan{\left(255 \right)} - 2630532245015356670594269106420677926348570456410711654400 \cos^{65}{\left(c \right)} \tan{\left(255 \right)} + 321324117314537342896175695404921898449907596272861184000 \cos^{63}{\left(c \right)} \tan{\left(255 \right)} - 36587336818755330613119818862279178385766647360126976000 \cos^{61}{\left(c \right)} \tan{\left(255 \right)} + 3876495274335470994789790905394331660835627875696640000 \cos^{59}{\left(c \right)} \tan{\left(255 \right)} - 381451772164020639066329206299154674010223101870080000 \cos^{57}{\left(c \right)} \tan{\left(255 \right)} + 34788401621358682282849223614482906269732346890551296 \cos^{55}{\left(c \right)} \tan{\left(255 \right)} - 2933937778720902043959058216010172410867363421880320 \cos^{53}{\left(c \right)} \tan{\left(255 \right)} + 228261419324604958027076683698171724377553455022080 \cos^{51}{\left(c \right)} \tan{\left(255 \right)} - 16339170763466838170027103734289745597427613696000 \cos^{49}{\left(c \right)} \tan{\left(255 \right)} + 1072976592463535944156347665374399197150707712000 \cos^{47}{\left(c \right)} \tan{\left(255 \right)} - 64438205358504575312945101459429196228884168704 \cos^{45}{\left(c \right)} \tan{\left(255 \right)} + 3526858873558134097734169086954605499037777920 \cos^{43}{\left(c \right)} \tan{\left(255 \right)} - 175256084240754737522229511639886020560814080 \cos^{41}{\left(c \right)} \tan{\left(255 \right)} + 7873657082917975277680703459604785056972800 \cos^{39}{\left(c \right)} \tan{\left(255 \right)} - 318331509081308363201735119138320914841600 \cos^{37}{\left(c \right)} \tan{\left(255 \right)} + 11522216578703878798497586377506615721984 \cos^{35}{\left(c \right)} \tan{\left(255 \right)} - 371221510955642618859977468844294799360 \cos^{33}{\left(c \right)} \tan{\left(255 \right)} + 10576567978878658685412697148164669440 \cos^{31}{\left(c \right)} \tan{\left(255 \right)} - 264527974945061117078146739129548800 \cos^{29}{\left(c \right)} \tan{\left(255 \right)} + 5759242697752832128578269845913600 \cos^{27}{\left(c \right)} \tan{\left(255 \right)} - 108101293417713587012351482134528 \cos^{25}{\left(c \right)} \tan{\left(255 \right)} + 1729805207238856203525999820800 \cos^{23}{\left(c \right)} \tan{\left(255 \right)} - 23288671638539304996385587200 \cos^{21}{\left(c \right)} \tan{\left(255 \right)} + 259697379146838044246016000 \cos^{19}{\left(c \right)} \tan{\left(255 \right)} - 2353627932696062410752000 \cos^{17}{\left(c \right)} \tan{\left(255 \right)} + 16936158669135687188480 \cos^{15}{\left(c \right)} \tan{\left(255 \right)} - 93950584333223116800 \cos^{13}{\left(c \right)} \tan{\left(255 \right)} + 386668719818035200 \cos^{11}{\left(c \right)} \tan{\left(255 \right)} - 1120956124288000 \cos^{9}{\left(c \right)} \tan{\left(255 \right)} + 2125259136000 \cos^{7}{\left(c \right)} \tan{\left(255 \right)} - 2348970624 \cos^{5}{\left(c \right)} \tan{\left(255 \right)} + 1235780 \cos^{3}{\left(c \right)} \tan{\left(255 \right)} - 195 \cos{\left(c \right)} \tan{\left(255 \right)} + \sin{\left(165 \right)}$$