Тригонометрическая часть
[src]// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
|< |*tan(255) + sin(165)
\\cos(195*c) otherwise /
$$\left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases}\right) \tan{\left(255 \right)}\right) + \sin{\left(165 \right)}$$
/ 1 for And(im(c) = 0, 195*c mod 2*pi = 0)
|
|/ 1 for And(im(c) = 0, 195*c mod 2*pi = 0)
||
|| 2/195*c\
<|-1 + cot |-----|
|< \ 2 / otherwise
||---------------- otherwise
|| 2/195*c\
||1 + cot |-----|
\\ \ 2 / 2*cot(165/2)
-------------------------------------------------------------------------------------------------- + ---------------
cot(255) 2
1 + cot (165/2)$$\left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{195 c}{2} \right)} - 1}{\cot^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}}{\cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
cos(195*c)*sin(255)
------------------- + sin(165)
cos(255) $$\frac{\sin{\left(255 \right)} \cos{\left(195 c \right)}}{\cos{\left(255 \right)}} + \sin{\left(165 \right)}$$
2 /pi \
2*sin (255)*sin|-- + 195*c|
\2 /
--------------------------- + sin(165)
sin(510) $$\frac{2 \sin^{2}{\left(255 \right)} \sin{\left(195 c + \frac{\pi}{2} \right)}}{\sin{\left(510 \right)}} + \sin{\left(165 \right)}$$
/ 2 \
|1 - ------------------|*sec(255)
| 2/ pi 195*c\|
| sec |- -- + -----||
1 \ \ 2 2 //
------------- + ---------------------------------
/ pi\ / pi\
sec|165 - --| sec|255 - --|
\ 2 / \ 2 / $$\frac{\left(1 - \frac{2}{\sec^{2}{\left(\frac{195 c}{2} - \frac{\pi}{2} \right)}}\right) \sec{\left(255 \right)}}{\sec{\left(255 - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}}$$
2
2*sin (255)*cos(195*c)*csc(510) + sin(165)
$$2 \sin^{2}{\left(255 \right)} \cos{\left(195 c \right)} \csc{\left(510 \right)} + \sin{\left(165 \right)}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
|| |
|| 2/195*c\ |
2 / 2 \ ||-1 + cot |-----| |
4*cot (255/2)*\1 + cot (255)/*|< \ 2 / |
||---------------- otherwise |
|| 2/195*c\ |
||1 + cot |-----| |
2*cot(165/2) \\ \ 2 / /
--------------- + -----------------------------------------------------------------------------------------
2 2
1 + cot (165/2) / 2 \
\1 + cot (255/2)/ *cot(255) $$\left(\frac{4 \cdot \left(1 + \cot^{2}{\left(255 \right)}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{195 c}{2} \right)} - 1}{\cot^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \cot^{2}{\left(\frac{255}{2} \right)}}{\left(\cot^{2}{\left(\frac{255}{2} \right)} + 1\right)^{2} \cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
/ 2 \ / pi\
|1 - -----------|*csc|-255 + --|
| 2/195*c\| \ 2 /
| csc |-----||
1 \ \ 2 //
-------- + --------------------------------
csc(165) csc(255) $$\frac{\left(1 - \frac{2}{\csc^{2}{\left(\frac{195 c}{2} \right)}}\right) \csc{\left(-255 + \frac{\pi}{2} \right)}}{\csc{\left(255 \right)}} + \frac{1}{\csc{\left(165 \right)}}$$
/ pi\
2*sec|510 - --|
1 \ 2 /
------------- + -------------------------
/ pi\ 2/ pi\
sec|165 - --| sec(195*c)*sec |255 - --|
\ 2 / \ 2 /$$\frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}} + \frac{2 \sec{\left(510 - \frac{\pi}{2} \right)}}{\sec{\left(195 c \right)} \sec^{2}{\left(255 - \frac{\pi}{2} \right)}}$$
/ 2/195*c\ \
| 8*tan |-----| |
| \ 4 / | 2*tan(165/2)
|1 - ------------------|*tan(255) + ---------------
| 2| 2
| / 2/195*c\\ | 1 + tan (165/2)
| |1 + tan |-----|| |
\ \ \ 4 // /
$$\left(1 - \frac{8 \tan^{2}{\left(\frac{195 c}{4} \right)}}{\left(\tan^{2}{\left(\frac{195 c}{4} \right)} + 1\right)^{2}}\right) \tan{\left(255 \right)} + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
2 || |
2*sin (255)*|< /pi \ |
||sin|-- + 195*c| otherwise |
\\ \2 / /
---------------------------------------------------------------------- + sin(165)
sin(510) $$\left(\frac{2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\sin{\left(195 c + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \sin^{2}{\left(255 \right)}}{\sin{\left(510 \right)}}\right) + \sin{\left(165 \right)}$$
/ // / 195*c \\\
| || 0 for And|im(c) = 0, ----- mod pi = 0|||
| || \ 2 /||
|1 - 2*|< ||*tan(255) + sin(165)
| ||1 - cos(195*c) ||
| ||-------------- otherwise ||
\ \\ 2 //
$$\left(\left(1 - \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge \frac{195 c}{2} \bmod \pi = 0 \\\frac{1 - \cos{\left(195 c \right)}}{2} & \text{otherwise} \end{cases}\right)\right)\right) \tan{\left(255 \right)}\right) + \sin{\left(165 \right)}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
|| |
|| 2/195*c\ |
||1 - tan |-----| | 2*tan(165/2)
|< \ 2 / |*tan(255) + ---------------
||--------------- otherwise | 2
|| 2/195*c\ | 1 + tan (165/2)
||1 + tan |-----| |
\\ \ 2 / /
$$\left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{195 c}{2} \right)}}{\tan^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \tan{\left(255 \right)}\right) + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
/ pi\
csc|-255 + --|
1 \ 2 /
-------- + ------------------------
csc(165) /pi \
csc(255)*csc|-- - 195*c|
\2 /$$\frac{1}{\csc{\left(165 \right)}} + \frac{\csc{\left(-255 + \frac{\pi}{2} \right)}}{\csc{\left(255 \right)} \csc{\left(- 195 c + \frac{\pi}{2} \right)}}$$
2
2*sin (255)*cos(195*c)
---------------------- + sin(165)
sin(510) $$\frac{2 \sin^{2}{\left(255 \right)} \cos{\left(195 c \right)}}{\sin{\left(510 \right)}} + \sin{\left(165 \right)}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
|| |
|| 1 | / pi\
|<--------------- otherwise |*csc|-255 + --|
|| /pi \ | \ 2 /
||csc|-- - 195*c| |
1 \\ \2 / /
-------- + -------------------------------------------------------------------------
csc(165) csc(255) $$\left(\frac{\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 195 c + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \csc{\left(-255 + \frac{\pi}{2} \right)}}{\csc{\left(255 \right)}}\right) + \frac{1}{\csc{\left(165 \right)}}$$
2/ pi\
2*cos |255 - --|*cos(195*c)
\ 2 / / pi\
--------------------------- + cos|165 - --|
/ pi\ \ 2 /
cos|510 - --|
\ 2 / $$\frac{2 \cos{\left(195 c \right)} \cos^{2}{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(510 - \frac{\pi}{2} \right)}} + \cos{\left(165 - \frac{\pi}{2} \right)}$$
/ 2/195*c\\
|1 - 2*sin |-----||*tan(255) + sin(165)
\ \ 2 //
$$\left(1 - 2 \sin^{2}{\left(\frac{195 c}{2} \right)}\right) \tan{\left(255 \right)} + \sin{\left(165 \right)}$$
2 // 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
2*sin (255)*|< |
\\cos(195*c) otherwise /
----------------------------------------------------------------- + sin(165)
sin(510) $$\left(\frac{2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases}\right) \sin^{2}{\left(255 \right)}}{\sin{\left(510 \right)}}\right) + \sin{\left(165 \right)}$$
1 2*csc(510)
-------- + -------------------------
csc(165) 2 /pi \
csc (255)*csc|-- - 195*c|
\2 /$$\frac{1}{\csc{\left(165 \right)}} + \frac{2 \csc{\left(510 \right)}}{\csc^{2}{\left(255 \right)} \csc{\left(- 195 c + \frac{\pi}{2} \right)}}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
|| |
| 1 for And(im(c) = 0, 195*c mod 2*pi = 0) |*tan(255) + sin(165)
||< otherwise |
\\\cos(195*c) otherwise /
$$\left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \tan{\left(255 \right)}\right) + \sin{\left(165 \right)}$$
/ 2/195*c\\
|1 - tan |-----||*tan(255)
2*tan(165/2) \ \ 2 //
--------------- + --------------------------
2 2/195*c\
1 + tan (165/2) 1 + tan |-----|
\ 2 / $$\frac{\left(1 - \tan^{2}{\left(\frac{195 c}{2} \right)}\right) \tan{\left(255 \right)}}{\tan^{2}{\left(\frac{195 c}{2} \right)} + 1} + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
/ 1 for And(im(c) = 0, 195*c mod 2*pi = 0)
|
| 2/195*c\
|-1 + cot |-----|
< \ 2 /
|---------------- otherwise
| 2/195*c\
|1 + cot |-----|
\ \ 2 / 2*cot(165/2)
--------------------------------------------------------- + ---------------
cot(255) 2
1 + cot (165/2)$$\left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{195 c}{2} \right)} - 1}{\cot^{2}{\left(\frac{195 c}{2} \right)} + 1} & \text{otherwise} \end{cases}}{\cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
2 / 2/195*c\\
2*sin (255)*|1 - 2*sin |-----||
\ \ 2 //
------------------------------- + sin(165)
sin(510) $$\frac{2 \cdot \left(1 - 2 \sin^{2}{\left(\frac{195 c}{2} \right)}\right) \sin^{2}{\left(255 \right)}}{\sin{\left(510 \right)}} + \sin{\left(165 \right)}$$
/ pi\
cos(195*c)*cos|255 - --|
\ 2 / / pi\
------------------------ + cos|165 - --|
cos(255) \ 2 /$$\frac{\cos{\left(195 c \right)} \cos{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(255 \right)}} + \cos{\left(165 - \frac{\pi}{2} \right)}$$
/ 2/ pi 195*c\\ / pi\
|1 - 2*cos |- -- + -----||*cos|255 - --|
\ \ 2 2 // \ 2 / / pi\
---------------------------------------- + cos|165 - --|
cos(255) \ 2 /$$\frac{\left(1 - 2 \cos^{2}{\left(\frac{195 c}{2} - \frac{\pi}{2} \right)}\right) \cos{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(255 \right)}} + \cos{\left(165 - \frac{\pi}{2} \right)}$$
1 sec(255)
------------- + ------------------------
/ pi\ / pi\
sec|165 - --| sec(195*c)*sec|255 - --|
\ 2 / \ 2 /
$$\frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}} + \frac{\sec{\left(255 \right)}}{\sec{\left(195 c \right)} \sec{\left(255 - \frac{\pi}{2} \right)}}$$
1 sec(255)
-------- + -------------------
csc(165) csc(255)*sec(195*c)
$$\frac{1}{\csc{\left(165 \right)}} + \frac{\sec{\left(255 \right)}}{\csc{\left(255 \right)} \sec{\left(195 c \right)}}$$
2 / 2 \ / 2/195*c\\
4*tan (255/2)*\1 + tan (255)/*|1 - tan |-----||
2*tan(165/2) \ \ 2 //
--------------- + -----------------------------------------------
2 2
1 + tan (165/2) / 2 \ / 2/195*c\\
\1 + tan (255/2)/ *|1 + tan |-----||*tan(255)
\ \ 2 // $$\frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{195 c}{2} \right)}\right) \left(\tan^{2}{\left(255 \right)} + 1\right) \tan^{2}{\left(\frac{255}{2} \right)}}{\left(1 + \tan^{2}{\left(\frac{255}{2} \right)}\right)^{2} \left(\tan^{2}{\left(\frac{195 c}{2} \right)} + 1\right) \tan{\left(255 \right)}} + \frac{2 \tan{\left(\frac{165}{2} \right)}}{1 + \tan^{2}{\left(\frac{165}{2} \right)}}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\
|| |
|< 1 |*sec(255)
||---------- otherwise |
1 \\sec(195*c) /
------------- + --------------------------------------------------------------
/ pi\ / pi\
sec|165 - --| sec|255 - --|
\ 2 / \ 2 / $$\left(\frac{\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(195 c \right)}} & \text{otherwise} \end{cases}\right) \sec{\left(255 \right)}}{\sec{\left(255 - \frac{\pi}{2} \right)}}\right) + \frac{1}{\sec{\left(165 - \frac{\pi}{2} \right)}}$$
// / 195*c \\
|| 0 for And|im(c) = 0, ----- mod pi = 0||
|| \ 2 /|
|| |
|| 2/195*c\ |
|| 4*cot |-----| |
1 - 2*|< \ 4 / |
||------------------ otherwise |
|| 2 |
||/ 2/195*c\\ |
|||1 + cot |-----|| |
||\ \ 4 // |
\\ / 2*cot(165/2)
----------------------------------------------------------------- + ---------------
cot(255) 2
1 + cot (165/2)$$\left(\frac{1 - \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge \frac{195 c}{2} \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{195 c}{4} \right)}}{\left(\cot^{2}{\left(\frac{195 c}{4} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right)}{\cot{\left(255 \right)}}\right) + \frac{2 \cot{\left(\frac{165}{2} \right)}}{\cot^{2}{\left(\frac{165}{2} \right)} + 1}$$
// 1 for And(im(c) = 0, 195*c mod 2*pi = 0)\ / pi\
|< |*cos|255 - --|
\\cos(195*c) otherwise / \ 2 / / pi\
------------------------------------------------------------------- + cos|165 - --|
cos(255) \ 2 /$$\left(\frac{\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(c\right)} = 0 \wedge 195 c \bmod 2 \pi = 0 \\\cos{\left(195 c \right)} & \text{otherwise} \end{cases}\right) \cos{\left(255 - \frac{\pi}{2} \right)}}{\cos{\left(255 \right)}}\right) + \cos{\left(165 - \frac{\pi}{2} \right)}$$
4 2/195*c\ 2 / 2 \ / 2/195*c\\
4*cos (255/2)*cos |-----|*tan (255/2)*\1 + tan (255)/*|1 - tan |-----||
\ 2 / \ \ 2 //
----------------------------------------------------------------------- + sin(165)
tan(255) $$\frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{195 c}{2} \right)}\right) \left(\tan^{2}{\left(255 \right)} + 1\right) \cos^{4}{\left(\frac{255}{2} \right)} \cos^{2}{\left(\frac{195 c}{2} \right)} \tan^{2}{\left(\frac{255}{2} \right)}}{\tan{\left(255 \right)}} + \sin{\left(165 \right)}$$