Выделение полного квадрата
Выделим полный квадрат из квадратного трёхчлена7 t 2 + ( t 2 y − y 2 ) 7 t^{2} + \left(t 2 y - y^{2}\right) 7 t 2 + ( t 2 y − y 2 ) Запишем такое тождество7 t 2 + ( t 2 y − y 2 ) = − 8 y 2 7 + ( 7 t 2 + 2 t y + y 2 7 ) 7 t^{2} + \left(t 2 y - y^{2}\right) = - \frac{8 y^{2}}{7} + \left(7 t^{2} + 2 t y + \frac{y^{2}}{7}\right) 7 t 2 + ( t 2 y − y 2 ) = − 7 8 y 2 + ( 7 t 2 + 2 t y + 7 y 2 ) или7 t 2 + ( t 2 y − y 2 ) = − 8 y 2 7 + ( 7 t + 7 y 7 ) 2 7 t^{2} + \left(t 2 y - y^{2}\right) = - \frac{8 y^{2}}{7} + \left(\sqrt{7} t + \frac{\sqrt{7} y}{7}\right)^{2} 7 t 2 + ( t 2 y − y 2 ) = − 7 8 y 2 + ( 7 t + 7 7 y ) 2 в виде произведения( − 8 7 y + ( 7 t + 7 7 y ) ) ( 8 7 y + ( 7 t + 7 7 y ) ) \left(- \sqrt{\frac{8}{7}} y + \left(\sqrt{7} t + \frac{\sqrt{7}}{7} y\right)\right) \left(\sqrt{\frac{8}{7}} y + \left(\sqrt{7} t + \frac{\sqrt{7}}{7} y\right)\right) ( − 7 8 y + ( 7 t + 7 7 y ) ) ( 7 8 y + ( 7 t + 7 7 y ) ) ( − 2 14 7 y + ( 7 t + 7 7 y ) ) ( 2 14 7 y + ( 7 t + 7 7 y ) ) \left(- \frac{2 \sqrt{14}}{7} y + \left(\sqrt{7} t + \frac{\sqrt{7}}{7} y\right)\right) \left(\frac{2 \sqrt{14}}{7} y + \left(\sqrt{7} t + \frac{\sqrt{7}}{7} y\right)\right) ( − 7 2 14 y + ( 7 t + 7 7 y ) ) ( 7 2 14 y + ( 7 t + 7 7 y ) ) ( 7 t + y ( − 2 14 7 + 7 7 ) ) ( 7 t + y ( 7 7 + 2 14 7 ) ) \left(\sqrt{7} t + y \left(- \frac{2 \sqrt{14}}{7} + \frac{\sqrt{7}}{7}\right)\right) \left(\sqrt{7} t + y \left(\frac{\sqrt{7}}{7} + \frac{2 \sqrt{14}}{7}\right)\right) ( 7 t + y ( − 7 2 14 + 7 7 ) ) ( 7 t + y ( 7 7 + 7 2 14 ) ) ( 7 t + y ( − 2 14 7 + 7 7 ) ) ( 7 t + y ( 7 7 + 2 14 7 ) ) \left(\sqrt{7} t + y \left(- \frac{2 \sqrt{14}}{7} + \frac{\sqrt{7}}{7}\right)\right) \left(\sqrt{7} t + y \left(\frac{\sqrt{7}}{7} + \frac{2 \sqrt{14}}{7}\right)\right) ( 7 t + y ( − 7 2 14 + 7 7 ) ) ( 7 t + y ( 7 7 + 7 2 14 ) )