Подстановка условия
[src]sin(270 - a) - cos(180 + a) при a = -3
sin(270 - a) - cos(180 + a)
$$\sin{\left(270 - a \right)} - \cos{\left(a + 180 \right)}$$
-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
-cos(180 + (-3)) - sin(-270 + (-3))
$$- \sin{\left((-3) - 270 \right)} - \cos{\left((-3) + 180 \right)}$$
-cos(180 - 3) - sin(-270 - 3)
$$- \cos{\left(-3 + 180 \right)} - \sin{\left(-270 - 3 \right)}$$
$$- \cos{\left(177 \right)} + \sin{\left(273 \right)}$$
I*(-180 - a) I*(180 + a) / I*(-270 + a) I*(270 - a)\
e e I*\- e + e /
- ------------- - ------------ - ----------------------------------
2 2 2 $$- \frac{i \left(e^{i \left(270 - a\right)} - e^{i \left(a - 270\right)}\right)}{2} - \frac{e^{i \left(- a - 180\right)}}{2} - \frac{e^{i \left(a + 180\right)}}{2}$$
-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
-cos(180 + a) + sin(270 - a)
Рациональный знаменатель
[src]-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
Объединение рациональных выражений
[src]-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
-cos(180 + a) - sin(-270 + a)
$$- \sin{\left (a - 270 \right )} - \cos{\left (a + 180 \right )}$$
-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
-cos(180 + a) - sin(-270 + a)
$$- \sin{\left(a - 270 \right)} - \cos{\left(a + 180 \right)}$$
Тригонометрическая часть
[src]-cos(180 + a) - sin(-270 + a)
$$- \sin{\left (a - 270 \right )} - \cos{\left (a + 180 \right )}$$
cos(a)*sin(270) + sin(180)*sin(a) - cos(180)*cos(a) - cos(270)*sin(a)
$$- \sin{\left(a \right)} \cos{\left(270 \right)} + \sin{\left(180 \right)} \sin{\left(a \right)} + \sin{\left(270 \right)} \cos{\left(a \right)} - \cos{\left(180 \right)} \cos{\left(a \right)}$$