sin(a-pi)еслиa=3/2 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
sin(a - pi)
sin(aπ)\sin{\left(a - \pi \right)}
Подстановка условия [src]
sin(a - pi) при a = 3/2
подставляем
sin(a - pi)
sin(aπ)\sin{\left(a - \pi \right)}
-sin(a)
sin(a)- \sin{\left(a \right)}
переменные
a = 3/2
a=32a = \frac{3}{2}
-sin((3/2))
sin((3/2))- \sin{\left((3/2) \right)}
-sin(3/2)
sin(32)- \sin{\left(\frac{3}{2} \right)}
Степени [src]
   /   I*(pi - a)    I*(a - pi)\ 
-I*\- e           + e          / 
---------------------------------
                2                
i(ei(πa)+ei(aπ))2- \frac{i \left(- e^{i \left(\pi - a\right)} + e^{i \left(a - \pi\right)}\right)}{2}
-sin(a)
sin(a)- \sin{\left(a \right)}
Численный ответ [src]
sin(a - pi)
Рациональный знаменатель [src]
-sin(a)
sin(a)- \sin{\left(a \right)}
Объединение рациональных выражений [src]
-sin(a)
sin(a)- \sin{\left(a \right)}
Общее упрощение [src]
-sin(a)
sin(a)- \sin{\left(a \right)}
Собрать выражение [src]
-sin(a)
sin(a)- \sin{\left (a \right )}
Тригонометрическая часть [src]
/                     0                        for And(im(a) = 0, a mod pi = 0)
|                                                                              
< //  0     for And(im(a) = 0, a mod pi = 0)\                                  
|-|<                                        |             otherwise            
\ \\sin(a)             otherwise            /                                  
{0forim(a)=0amodπ=0{0forim(a)=0amodπ=0sin(a)otherwiseotherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}
    /    pi\
-cos|a - --|
    \    2 /
cos(aπ2)- \cos{\left(a - \frac{\pi}{2} \right)}
/     0       for And(im(a) = 0, a mod pi = 0)
|                                             
|       /a\                                   
| -2*tan|-|                                   
<       \2/                                   
|-----------             otherwise            
|       2/a\                                  
|1 + tan |-|                                  
\        \2/                                  
{0forim(a)=0amodπ=02tan(a2)tan2(a2)+1otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}
/     0        for And(im(a) = 0, a mod pi = 0)
|                                              
<    /    pi\                                  
|-cos|a - --|             otherwise            
\    \    2 /                                  
{0forim(a)=0amodπ=0cos(aπ2)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}
       /a\ 
 -2*cot|-| 
       \2/ 
-----------
       2/a\
1 + cot |-|
        \2/
2cot(a2)cot2(a2)+1- \frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1}
/     0       for And(im(a) = 0, a mod pi = 0)
|                                             
|    -1                                       
<-----------             otherwise            
|   /    pi\                                  
|sec|a - --|                                  
\   \    2 /                                  
{0forim(a)=0amodπ=01sec(aπ2)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}
/         0            for And(im(a) = 0, a mod pi = 0)
|                                                      
|        -2                                            
|--------------------             otherwise            
{0forim(a)=0amodπ=02(1+1cot2(a2))cot(a2)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(\frac{a}{2} \right)}}\right) \cot{\left(\frac{a}{2} \right)}} & \text{otherwise} \end{cases}
      1      
-------------
   /    3*pi\
sec|a - ----|
   \     2  /
1sec(a3π2)\frac{1}{\sec{\left(a - \frac{3 \pi}{2} \right)}}
 //  0     for And(im(a) = 0, a mod pi = 0)\
-|<                                        |
 \\sin(a)             otherwise            /
{0forim(a)=0amodπ=0sin(a)otherwise- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}
-sin(a)
sin(a)- \sin{\left(a \right)}
       /a\ 
 -2*tan|-| 
       \2/ 
-----------
       2/a\
1 + tan |-|
        \2/
2tan(a2)tan2(a2)+1- \frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1}
    -1     
-----------
   /    pi\
sec|a - --|
   \    2 /
1sec(aπ2)- \frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}}
 //     0       for And(im(a) = 0, a mod pi = 0)\
 ||                                             |
 ||       /a\                                   |
 ||  2*cot|-|                                   |
-|<       \2/                                   |
 ||-----------             otherwise            |
 ||       2/a\                                  |
 ||1 + cot |-|                                  |
 \\        \2/                                  /
{0forim(a)=0amodπ=02cot(a2)cot2(a2)+1otherwise- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}
   /    3*pi\
cos|a - ----|
   \     2  /
cos(a3π2)\cos{\left(a - \frac{3 \pi}{2} \right)}
        -2          
--------------------
/       1   \    /a\
|1 + -------|*tan|-|
|       2/a\|    \2/
|    tan |-||       
\        \2//       
2(1+1tan2(a2))tan(a2)- \frac{2}{\left(1 + \frac{1}{\tan^{2}{\left(\frac{a}{2} \right)}}\right) \tan{\left(\frac{a}{2} \right)}}
 -1   
------
csc(a)
1csc(a)- \frac{1}{\csc{\left(a \right)}}
/                        0                          for And(im(a) = 0, a mod pi = 0)
|                                                                                   
| //     0       for And(im(a) = 0, a mod pi = 0)\                                  
| ||                                             |                                  
| ||       /a\                                   |                                  
< ||  2*cot|-|                                   |                                  
|-|<       \2/                                   |             otherwise            
| ||-----------             otherwise            |                                  
| ||       2/a\                                  |                                  
| ||1 + cot |-|                                  |                                  
\ \\        \2/                                  /                                  
{0forim(a)=0amodπ=0{0forim(a)=0amodπ=02cot(a2)cot2(a2)+1otherwiseotherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}
/  0     for And(im(a) = 0, a mod pi = 0)
|                                        
< -1                                     
|------             otherwise            
\csc(a)                                  
{0forim(a)=0amodπ=01csc(a)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}
/   0     for And(im(a) = 0, a mod pi = 0)
<                                         
\-sin(a)             otherwise            
{0forim(a)=0amodπ=0sin(a)otherwise\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\- \sin{\left(a \right)} & \text{otherwise} \end{cases}
Комбинаторика [src]
-sin(a)
sin(a)- \sin{\left(a \right)}
Раскрыть выражение [src]
-sin(a)
sin(a)- \sin{\left(a \right)}