Подстановка условия
[src](sin(45 + a) - cos(45 + a))/(sin(45 + a) + cos(45 + a)) при a = -4
sin(45 + a) - cos(45 + a)
-------------------------
sin(45 + a) + cos(45 + a)
$$\frac{\sin{\left(a + 45 \right)} - \cos{\left(a + 45 \right)}}{\sin{\left(a + 45 \right)} + \cos{\left(a + 45 \right)}}$$
-1
----------------
/ pi\
tan|45 + a + --|
\ 4 /
$$- \frac{1}{\tan{\left(a + \frac{\pi}{4} + 45 \right)}}$$
-1
-------------------
/ pi\
tan|45 + (-4) + --|
\ 4 /
$$- \frac{1}{\tan{\left((-4) + \frac{\pi}{4} + 45 \right)}}$$
-1
----------------
/ pi\
tan|45 - 4 + --|
\ 4 /
$$- \frac{1}{\tan{\left(-4 + \frac{\pi}{4} + 45 \right)}}$$
-1
------------
/ pi\
tan|41 + --|
\ 4 /
$$- \frac{1}{\tan{\left(\frac{\pi}{4} + 41 \right)}}$$
I*(-45 - a) I*(45 + a) / I*(-45 - a) I*(45 + a)\
e e I*\- e + e /
- ------------ - ----------- - --------------------------------
2 2 2
---------------------------------------------------------------
I*(-45 - a) I*(45 + a) / I*(-45 - a) I*(45 + a)\
e e I*\- e + e /
------------ + ----------- - --------------------------------
2 2 2
$$\frac{- \frac{i \left(- e^{i \left(- a - 45\right)} + e^{i \left(a + 45\right)}\right)}{2} - \frac{e^{i \left(- a - 45\right)}}{2} - \frac{e^{i \left(a + 45\right)}}{2}}{- \frac{i \left(- e^{i \left(- a - 45\right)} + e^{i \left(a + 45\right)}\right)}{2} + \frac{e^{i \left(- a - 45\right)}}{2} + \frac{e^{i \left(a + 45\right)}}{2}}$$
Рациональный знаменатель
[src] sin(45 + a) cos(45 + a)
------------------------- - -------------------------
cos(45 + a) + sin(45 + a) cos(45 + a) + sin(45 + a)
$$\frac{\sin{\left(a + 45 \right)}}{\sin{\left(a + 45 \right)} + \cos{\left(a + 45 \right)}} - \frac{\cos{\left(a + 45 \right)}}{\sin{\left(a + 45 \right)} + \cos{\left(a + 45 \right)}}$$
cos(45)*sin(a) cos(a)*sin(45) sin(45)*sin(a) cos(45)*cos(a)
----------------------------------------------------------------- + ----------------------------------------------------------------- + ----------------------------------------------------------------- - -----------------------------------------------------------------
cos(45)*cos(a) + cos(45)*sin(a) + cos(a)*sin(45) - sin(45)*sin(a) cos(45)*cos(a) + cos(45)*sin(a) + cos(a)*sin(45) - sin(45)*sin(a) cos(45)*cos(a) + cos(45)*sin(a) + cos(a)*sin(45) - sin(45)*sin(a) cos(45)*cos(a) + cos(45)*sin(a) + cos(a)*sin(45) - sin(45)*sin(a)
$$\frac{\sin{\left(a \right)} \cos{\left(45 \right)}}{- \sin{\left(45 \right)} \sin{\left(a \right)} + \sin{\left(a \right)} \cos{\left(45 \right)} + \cos{\left(45 \right)} \cos{\left(a \right)} + \sin{\left(45 \right)} \cos{\left(a \right)}} + \frac{\sin{\left(45 \right)} \sin{\left(a \right)}}{- \sin{\left(45 \right)} \sin{\left(a \right)} + \sin{\left(a \right)} \cos{\left(45 \right)} + \cos{\left(45 \right)} \cos{\left(a \right)} + \sin{\left(45 \right)} \cos{\left(a \right)}} - \frac{\cos{\left(45 \right)} \cos{\left(a \right)}}{- \sin{\left(45 \right)} \sin{\left(a \right)} + \sin{\left(a \right)} \cos{\left(45 \right)} + \cos{\left(45 \right)} \cos{\left(a \right)} + \sin{\left(45 \right)} \cos{\left(a \right)}} + \frac{\sin{\left(45 \right)} \cos{\left(a \right)}}{- \sin{\left(45 \right)} \sin{\left(a \right)} + \sin{\left(a \right)} \cos{\left(45 \right)} + \cos{\left(45 \right)} \cos{\left(a \right)} + \sin{\left(45 \right)} \cos{\left(a \right)}}$$