Тригонометрическая часть
[src] / // / / pi\ \\ // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\\ // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| || || || |
| || \ \ 2 / /| || // 1 for And(im(b) = 0, b mod 2*pi = 0)\ || || // 1 for And(im(b) = 0, b mod 2*pi = 0)\ |
| || | || || | || || || | |
| || -2 | || || 2/b\ | || || || 2/b\ | |
|- |<------------------------------ otherwise | + 4*|< ||-1 + cot |-| | ||*|< ||1 + cot |-| | |
| ||/ 1 \ /b pi\ | ||-|< \2/ | otherwise || ||-|< \2/ | otherwise |
| |||1 + ------------|*cot|- + --| | || ||------------ otherwise | || || ||------------ otherwise | |
| ||| 2/b pi\| \2 4 / | || || 2/b\ | || || || 2/b\ | |
| ||| cot |- + --|| | || ||1 + cot |-| | || || ||-1 + cot |-| | |
\ \\\ \2 4 // / \\ \\ \2/ / // \\ \\ \2/ / /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 ( 1 + 1 cot 2 ( b 2 + π 4 ) ) cot ( b 2 + π 4 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cot 2 ( b 2 ) − 1 cot 2 ( b 2 ) + 1 otherwise otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cot 2 ( b 2 ) + 1 cot 2 ( b 2 ) − 1 otherwise otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}\right) \cot{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{b}{2} \right)} - 1}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{b}{2} \right)} + 1}{\cot^{2}{\left(\frac{b}{2} \right)} - 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − ( 1 + c o t 2 ( 2 b + 4 π ) 1 ) c o t ( 2 b + 4 π ) 2 for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + 4 ⎩ ⎨ ⎧ 1 − ⎩ ⎨ ⎧ 1 c o t 2 ( 2 b ) + 1 c o t 2 ( 2 b ) − 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ⎩ ⎨ ⎧ 1 − ⎩ ⎨ ⎧ 1 c o t 2 ( 2 b ) − 1 c o t 2 ( 2 b ) + 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise /b pi\
-4*cos(b) + (1 + sin(b))*cot|- + --|
\2 4 /
------------------------------------
/ 2/b\\ 2/b\
5*|1 - cot |-||*sin |-|
\ \2// \2/ ( sin ( b ) + 1 ) cot ( b 2 + π 4 ) − 4 cos ( b ) 5 ⋅ ( 1 − cot 2 ( b 2 ) ) sin 2 ( b 2 ) \frac{\left(\sin{\left(b \right)} + 1\right) \cot{\left(\frac{b}{2} + \frac{\pi}{4} \right)} - 4 \cos{\left(b \right)}}{5 \cdot \left(1 - \cot^{2}{\left(\frac{b}{2} \right)}\right) \sin^{2}{\left(\frac{b}{2} \right)}} 5 ⋅ ( 1 − cot 2 ( 2 b ) ) sin 2 ( 2 b ) ( sin ( b ) + 1 ) cot ( 2 b + 4 π ) − 4 cos ( b ) / /b pi\ / 2/b\\\
| 2*cot|- + --| 4*|1 - cot |-|||
/ 2/b\\ | \2 4 / \ \2//|
|1 + cot |-||*|---------------- + ---------------|
\ \2// | 2/b pi\ 2/b\ |
|1 + cot |- + --| 1 + cot |-| |
\ \2 4 / \2/ /
--------------------------------------------------
/ 2/b\\
5*|1 - cot |-||
\ \2// ( 4 ⋅ ( 1 − cot 2 ( b 2 ) ) cot 2 ( b 2 ) + 1 + 2 cot ( b 2 + π 4 ) cot 2 ( b 2 + π 4 ) + 1 ) ( cot 2 ( b 2 ) + 1 ) 5 ⋅ ( 1 − cot 2 ( b 2 ) ) \frac{\left(\frac{4 \cdot \left(1 - \cot^{2}{\left(\frac{b}{2} \right)}\right)}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} + \frac{2 \cot{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\cot^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)} + 1}\right) \left(\cot^{2}{\left(\frac{b}{2} \right)} + 1\right)}{5 \cdot \left(1 - \cot^{2}{\left(\frac{b}{2} \right)}\right)} 5 ⋅ ( 1 − cot 2 ( 2 b ) ) ( c o t 2 ( 2 b ) + 1 4 ⋅ ( 1 − c o t 2 ( 2 b ) ) + c o t 2 ( 2 b + 4 π ) + 1 2 c o t ( 2 b + 4 π ) ) ( cot 2 ( 2 b ) + 1 ) / / pi\\
-|-4*cos(b) + sin|b + --||
\ \ 2 //
---------------------------
5*cos(b) − sin ( b + π 2 ) − 4 cos ( b ) 5 cos ( b ) - \frac{\sin{\left(b + \frac{\pi}{2} \right)} - 4 \cos{\left(b \right)}}{5 \cos{\left(b \right)}} − 5 cos ( b ) sin ( b + 2 π ) − 4 cos ( b ) / pi\ (1 + sin(b))*cos(b)
- 4*sin|b + --| + -------------------
\ 2 / 2/b pi\
2*sin |- + --|
\2 4 /
-------------------------------------
/ 2 \
| sin (b) | 2/b\
5*|1 - ---------|*sin |-|
| 4/b\| \2/
| 4*sin |-||
\ \2// ( sin ( b ) + 1 ) cos ( b ) 2 sin 2 ( b 2 + π 4 ) − 4 sin ( b + π 2 ) 5 ⋅ ( 1 − sin 2 ( b ) 4 sin 4 ( b 2 ) ) sin 2 ( b 2 ) \frac{\frac{\left(\sin{\left(b \right)} + 1\right) \cos{\left(b \right)}}{2 \sin^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} - 4 \sin{\left(b + \frac{\pi}{2} \right)}}{5 \cdot \left(1 - \frac{\sin^{2}{\left(b \right)}}{4 \sin^{4}{\left(\frac{b}{2} \right)}}\right) \sin^{2}{\left(\frac{b}{2} \right)}} 5 ⋅ ( 1 − 4 s i n 4 ( 2 b ) s i n 2 ( b ) ) sin 2 ( 2 b ) 2 s i n 2 ( 2 b + 4 π ) ( s i n ( b ) + 1 ) c o s ( b ) − 4 sin ( b + 2 π ) / 1 \ / 1 + sin(b)\
|1 - ------|*|-4*cos(b) + -----------|
\ cos(b)/ | /b pi\|
| tan|- + --||
\ \2 4 //
--------------------------------------
4/b\ 2/b\
40*cos |-|*tan |-|
\4/ \4/ ( 1 − 1 cos ( b ) ) ( sin ( b ) + 1 tan ( b 2 + π 4 ) − 4 cos ( b ) ) 40 cos 4 ( b 4 ) tan 2 ( b 4 ) \frac{\left(1 - \frac{1}{\cos{\left(b \right)}}\right) \left(\frac{\sin{\left(b \right)} + 1}{\tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} - 4 \cos{\left(b \right)}\right)}{40 \cos^{4}{\left(\frac{b}{4} \right)} \tan^{2}{\left(\frac{b}{4} \right)}} 40 cos 4 ( 4 b ) tan 2 ( 4 b ) ( 1 − c o s ( b ) 1 ) ( t a n ( 2 b + 4 π ) s i n ( b ) + 1 − 4 cos ( b ) ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | |
| || 2/b pi\ | | // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || -4*sin |- + --| | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| || |
| || \2 4 / | || || || -1 |
|- |<--------------------------- otherwise | + 4*|< / pi\ ||*|<----------- otherwise |
| ||/ 4/b pi\\ | ||-sin|b + --| otherwise || || / pi\ |
| ||| 4*sin |- + --|| | \\ \ 2 / /| ||sin|b + --| |
| ||| \2 4 /| | | \\ \ 2 / /
| |||1 + --------------|*cos(b) | |
| ||| 2 | | |
| ||\ cos (b) / | |
\ \\ / /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 4 sin 2 ( b 2 + π 4 ) ( 4 sin 4 ( b 2 + π 4 ) cos 2 ( b ) + 1 ) cos ( b ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − sin ( b + π 2 ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − 1 sin ( b + π 2 ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{4 \sin^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\left(\frac{4 \sin^{4}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\cos^{2}{\left(b \right)}} + 1\right) \cos{\left(b \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \sin{\left(b + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\sin{\left(b + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − ( c o s 2 ( b ) 4 s i n 4 ( 2 b + 4 π ) + 1 ) c o s ( b ) 4 s i n 2 ( 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − sin ( b + 2 π ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − s i n ( b + 2 π ) 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) / // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\\ // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| // / / pi\ \\ || || || |
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| || 1 || || 1 |
| || \ \ 2 / /| ||-1 + ------- || ||1 + ------- |
| || | || 2/b\ || || 2/b\ |
| || -2 | || cot |-| || || cot |-| |
|- |<------------------------------ otherwise | + 4*|< \2/ ||*|< \2/ |
| ||/ 1 \ /b pi\ | ||------------ otherwise || ||------------ otherwise |
| |||1 + ------------|*cot|- + --| | || 1 || || 1 |
| ||| 2/b pi\| \2 4 / | ||1 + ------- || ||-1 + ------- |
| ||| cot |- + --|| | || 2/b\ || || 2/b\ |
| \\\ \2 4 // / || cot |-| || || cot |-| |
\ \\ \2/ // \\ \2/ /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 ( 1 + 1 cot 2 ( b 2 + π 4 ) ) cot ( b 2 + π 4 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − 1 + 1 cot 2 ( b 2 ) 1 + 1 cot 2 ( b 2 ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 1 + 1 cot 2 ( b 2 ) − 1 + 1 cot 2 ( b 2 ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}\right) \cot{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\\frac{-1 + \frac{1}{\cot^{2}{\left(\frac{b}{2} \right)}}}{1 + \frac{1}{\cot^{2}{\left(\frac{b}{2} \right)}}} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\\frac{1 + \frac{1}{\cot^{2}{\left(\frac{b}{2} \right)}}}{-1 + \frac{1}{\cot^{2}{\left(\frac{b}{2} \right)}}} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − ( 1 + c o t 2 ( 2 b + 4 π ) 1 ) c o t ( 2 b + 4 π ) 2 for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + 4 ⎩ ⎨ ⎧ 1 1 + c o t 2 ( 2 b ) 1 − 1 + c o t 2 ( 2 b ) 1 for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ⎩ ⎨ ⎧ 1 − 1 + c o t 2 ( 2 b ) 1 1 + c o t 2 ( 2 b ) 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise / 1 4 \
-|- ----------- - ------|*sec(b)
\ sec(pi + b) sec(b)/
---------------------------------
5 − ( − 1 sec ( b + π ) − 4 sec ( b ) ) sec ( b ) 5 - \frac{\left(- \frac{1}{\sec{\left(b + \pi \right)}} - \frac{4}{\sec{\left(b \right)}}\right) \sec{\left(b \right)}}{5} − 5 ( − s e c ( b + π ) 1 − s e c ( b ) 4 ) sec ( b ) -6*cos(b)
------------------------------
/ 2 \
| sin (b) |
5*(1 - cos(b))*|1 - ---------|
| 4/b\|
| 4*sin |-||
\ \2// − 6 cos ( b ) 5 ⋅ ( 1 − sin 2 ( b ) 4 sin 4 ( b 2 ) ) ( 1 − cos ( b ) ) - \frac{6 \cos{\left(b \right)}}{5 \cdot \left(1 - \frac{\sin^{2}{\left(b \right)}}{4 \sin^{4}{\left(\frac{b}{2} \right)}}\right) \left(1 - \cos{\left(b \right)}\right)} − 5 ⋅ ( 1 − 4 s i n 4 ( 2 b ) s i n 2 ( b ) ) ( 1 − cos ( b ) ) 6 cos ( b ) / / /b\\ \
| |1 - tan|-||*(1 + sin(b))|
2/b\ / 1 \ | \ \2// |
csc |-|*|1 - ------|*|-4*cos(b) + -------------------------|
\2/ \ cos(b)/ | /b\ |
| 1 + tan|-| |
\ \2/ /
------------------------------------------------------------
10 ( 1 − 1 cos ( b ) ) ( ( 1 − tan ( b 2 ) ) ( sin ( b ) + 1 ) tan ( b 2 ) + 1 − 4 cos ( b ) ) csc 2 ( b 2 ) 10 \frac{\left(1 - \frac{1}{\cos{\left(b \right)}}\right) \left(\frac{\left(1 - \tan{\left(\frac{b}{2} \right)}\right) \left(\sin{\left(b \right)} + 1\right)}{\tan{\left(\frac{b}{2} \right)} + 1} - 4 \cos{\left(b \right)}\right) \csc^{2}{\left(\frac{b}{2} \right)}}{10} 10 ( 1 − c o s ( b ) 1 ) ( t a n ( 2 b ) + 1 ( 1 − t a n ( 2 b ) ) ( s i n ( b ) + 1 ) − 4 cos ( b ) ) csc 2 ( 2 b ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || \ \ 2 / /| || || || |
| || | || / 2/b\\ || || / 2/b\\ |
| || /b pi\ | ||-|1 - tan |-|| || ||-|1 + tan |-|| |
|- |< -2*tan|- + --| | + 4*|< \ \2// ||*|< \ \2// |
| || \2 4 / | ||--------------- otherwise || ||--------------- otherwise |
| ||---------------- otherwise | || 2/b\ || || 2/b\ |
| || 2/b pi\ | || 1 + tan |-| || || 1 - tan |-| |
| ||1 + tan |- + --| | \\ \2/ /| \\ \2/ /
\ \\ \2 4 / / /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 tan ( b 2 + π 4 ) tan 2 ( b 2 + π 4 ) + 1 otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − 1 − tan 2 ( b 2 ) tan 2 ( b 2 ) + 1 otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − tan 2 ( b 2 ) + 1 1 − tan 2 ( b 2 ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \frac{1 - \tan^{2}{\left(\frac{b}{2} \right)}}{\tan^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \frac{\tan^{2}{\left(\frac{b}{2} \right)} + 1}{1 - \tan^{2}{\left(\frac{b}{2} \right)}} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − t a n 2 ( 2 b + 4 π ) + 1 2 t a n ( 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + 4 ⎩ ⎨ ⎧ 1 − t a n 2 ( 2 b ) + 1 1 − t a n 2 ( 2 b ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ⎩ ⎨ ⎧ 1 − 1 − t a n 2 ( 2 b ) t a n 2 ( 2 b ) + 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || \ \ 2 / /| || || || |
| || | || 2/b\ || || 2/b\ |
| || /b pi\ | ||-1 + tan |-| || ||1 + tan |-| |
|- |< -2*tan|- + --| | + 4*|< \2/ ||*|< \2/ |
| || \2 4 / | ||------------ otherwise || ||------------ otherwise |
| ||---------------- otherwise | || 2/b\ || || 2/b\ |
| || 2/b pi\ | ||1 + tan |-| || ||-1 + tan |-| |
| ||1 + tan |- + --| | \\ \2/ /| \\ \2/ /
\ \\ \2 4 / / /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 tan ( b 2 + π 4 ) tan 2 ( b 2 + π 4 ) + 1 otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 tan 2 ( b 2 ) − 1 tan 2 ( b 2 ) + 1 otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 tan 2 ( b 2 ) + 1 tan 2 ( b 2 ) − 1 otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\\frac{\tan^{2}{\left(\frac{b}{2} \right)} - 1}{\tan^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\\frac{\tan^{2}{\left(\frac{b}{2} \right)} + 1}{\tan^{2}{\left(\frac{b}{2} \right)} - 1} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − t a n 2 ( 2 b + 4 π ) + 1 2 t a n ( 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + 4 ⎩ ⎨ ⎧ 1 t a n 2 ( 2 b ) + 1 t a n 2 ( 2 b ) − 1 for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ⎩ ⎨ ⎧ 1 t a n 2 ( 2 b ) − 1 t a n 2 ( 2 b ) + 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise / 1 4 \ /pi \
-|------ - -----------|*csc|-- - b|
|sec(b) /pi \| \2 /
| csc|-- - b||
\ \2 //
------------------------------------
5 − ( 1 sec ( b ) − 4 csc ( − b + π 2 ) ) csc ( − b + π 2 ) 5 - \frac{\left(\frac{1}{\sec{\left(b \right)}} - \frac{4}{\csc{\left(- b + \frac{\pi}{2} \right)}}\right) \csc{\left(- b + \frac{\pi}{2} \right)}}{5} − 5 ( s e c ( b ) 1 − c s c ( − b + 2 π ) 4 ) csc ( − b + 2 π ) / 7*pi\
4*sin|-b + ----| + cos(b)
\ 2 /
-------------------------
/ pi\
5*sin|b - --|
\ 2 / 4 sin ( − b + 7 π 2 ) + cos ( b ) 5 sin ( b − π 2 ) \frac{4 \sin{\left(- b + \frac{7 \pi}{2} \right)} + \cos{\left(b \right)}}{5 \sin{\left(b - \frac{\pi}{2} \right)}} 5 sin ( b − 2 π ) 4 sin ( − b + 2 7 π ) + cos ( b ) / /b\ \
| 2*tan|-| |
| \2/ |
|1 + ----------- |
| 2/b\ / 2/b\\|
2 | 1 + tan |-| 4*|1 - tan |-|||
/ 2/b\\ | \2/ \ \2//|
|1 + tan |-|| *|--------------- - ---------------|
\ \4// | /b pi\ 2/b\ |
| tan|- + --| 1 + tan |-| |
\ \2 4 / \2/ /
--------------------------------------------------
/ 1 \ 2/b\
20*|1 - -------|*tan |-|
| 2/b\| \4/
| tan |-||
\ \2// ( 1 + 2 tan ( b 2 ) tan 2 ( b 2 ) + 1 tan ( b 2 + π 4 ) − 4 ⋅ ( 1 − tan 2 ( b 2 ) ) tan 2 ( b 2 ) + 1 ) ( tan 2 ( b 4 ) + 1 ) 2 20 ⋅ ( 1 − 1 tan 2 ( b 2 ) ) tan 2 ( b 4 ) \frac{\left(\frac{1 + \frac{2 \tan{\left(\frac{b}{2} \right)}}{\tan^{2}{\left(\frac{b}{2} \right)} + 1}}{\tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} - \frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{b}{2} \right)}\right)}{\tan^{2}{\left(\frac{b}{2} \right)} + 1}\right) \left(\tan^{2}{\left(\frac{b}{4} \right)} + 1\right)^{2}}{20 \cdot \left(1 - \frac{1}{\tan^{2}{\left(\frac{b}{2} \right)}}\right) \tan^{2}{\left(\frac{b}{4} \right)}} 20 ⋅ ( 1 − t a n 2 ( 2 b ) 1 ) tan 2 ( 4 b ) t a n ( 2 b + 4 π ) 1 + t a n 2 ( 2 b ) + 1 2 t a n ( 2 b ) − t a n 2 ( 2 b ) + 1 4 ⋅ ( 1 − t a n 2 ( 2 b ) ) ( tan 2 ( 4 b ) + 1 ) 2 / / 1 \ /b pi\\
| |1 + ------|*csc|- + --||
2/b\ | 4 \ csc(b)/ \2 4 /|
csc |-|*|- ----------- + ------------------------|
\2/ | /pi \ / b pi\ |
| csc|-- - b| csc|- - + --| |
\ \2 / \ 2 4 / /
--------------------------------------------------
/ 2/b\ \
| csc |-| |
| \2/ |
5*|1 - ------------|
| 2/pi b\|
| csc |-- - -||
\ \2 2// ( ( 1 + 1 csc ( b ) ) csc ( b 2 + π 4 ) csc ( − b 2 + π 4 ) − 4 csc ( − b + π 2 ) ) csc 2 ( b 2 ) 5 ( − csc 2 ( b 2 ) csc 2 ( − b 2 + π 2 ) + 1 ) \frac{\left(\frac{\left(1 + \frac{1}{\csc{\left(b \right)}}\right) \csc{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\csc{\left(- \frac{b}{2} + \frac{\pi}{4} \right)}} - \frac{4}{\csc{\left(- b + \frac{\pi}{2} \right)}}\right) \csc^{2}{\left(\frac{b}{2} \right)}}{5 \left(- \frac{\csc^{2}{\left(\frac{b}{2} \right)}}{\csc^{2}{\left(- \frac{b}{2} + \frac{\pi}{2} \right)}} + 1\right)} 5 ( − c s c 2 ( − 2 b + 2 π ) c s c 2 ( 2 b ) + 1 ) ( c s c ( − 2 b + 4 π ) ( 1 + c s c ( b ) 1 ) c s c ( 2 b + 4 π ) − c s c ( − b + 2 π ) 4 ) csc 2 ( 2 b ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | | // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || /b pi\ | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| || |
|- |< -2*tan|- + --| | + 4*|< ||*|< -1 |
| || \2 4 / | \\-cos(b) otherwise /| ||------ otherwise |
| ||---------------- otherwise | | \\cos(b) /
| || 2/b pi\ | |
| ||1 + tan |- + --| | |
\ \\ \2 4 / / /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 tan ( b 2 + π 4 ) tan 2 ( b 2 + π 4 ) + 1 otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − cos ( b ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − 1 cos ( b ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\cos{\left(b \right)}} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − t a n 2 ( 2 b + 4 π ) + 1 2 t a n ( 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − cos ( b ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − c o s ( b ) 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) // / b \\
|| zoo for And|im(b) = 0, - mod pi = 0||
/ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ / // 0 for And(im(b) = 0, b mod pi = 0)\\ /b pi\\ || \ 2 /|
|- 4*|< | + |1 + |< ||*cot|- + --||*|< |
\ \\cos(b) otherwise / \ \\sin(b) otherwise // \2 4 // || 2 |
||---------- otherwise |
\\1 - cos(b) /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
/ 2/b\\
5*|1 - cot |-||
\ \2// ( ( ( ( { 0 for im ( b ) = 0 ∧ b m o d π = 0 sin ( b ) otherwise ) + 1 ) cot ( b 2 + π 4 ) ) − ( 4 ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cos ( b ) otherwise ) ) ) ( { ∞ ~ for im ( b ) = 0 ∧ b 2 m o d π = 0 2 1 − cos ( b ) otherwise ) 5 ⋅ ( 1 − cot 2 ( b 2 ) ) \frac{\left(\left(\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod \pi = 0 \\\sin{\left(b \right)} & \text{otherwise} \end{cases}\right) + 1\right) \cot{\left(\frac{b}{2} + \frac{\pi}{4} \right)}\right) - \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} \tilde{\infty} & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \frac{b}{2} \bmod \pi = 0 \\\frac{2}{1 - \cos{\left(b \right)}} & \text{otherwise} \end{cases}\right)}{5 \cdot \left(1 - \cot^{2}{\left(\frac{b}{2} \right)}\right)} 5 ⋅ ( 1 − cot 2 ( 2 b ) ) ( ( ( ( { 0 sin ( b ) for im ( b ) = 0 ∧ b mod π = 0 otherwise ) + 1 ) cot ( 2 b + 4 π ) ) − ( 4 ( { 1 cos ( b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) ) ( { ∞ ~ 1 − c o s ( b ) 2 for im ( b ) = 0 ∧ 2 b mod π = 0 otherwise ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | | // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || / /b\\ | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| || |
|- |<-(1 - sin(b))*|1 + tan|-|| | + 4*|< ||*|< -1 |
| || \ \2// | \\-cos(b) otherwise /| ||------ otherwise |
| ||--------------------------- otherwise | | \\cos(b) /
| || /b\ | |
| || 1 - tan|-| | |
\ \\ \2/ / /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − ( 1 − sin ( b ) ) ( tan ( b 2 ) + 1 ) 1 − tan ( b 2 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − cos ( b ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − 1 cos ( b ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(1 - \sin{\left(b \right)}\right) \left(\tan{\left(\frac{b}{2} \right)} + 1\right)}{1 - \tan{\left(\frac{b}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\cos{\left(b \right)}} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − 1 − t a n ( 2 b ) ( 1 − s i n ( b ) ) ( t a n ( 2 b ) + 1 ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − cos ( b ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − c o s ( b ) 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | |
| || /b pi\ | |
| || -2*cos|- - --| | | // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || \2 4 / | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| || |
|- |<------------------------------ otherwise | + 4*|< ||*|< -1 |
| ||/ 2/b pi\\ | \\-cos(b) otherwise /| ||------ otherwise |
| ||| cos |- - --|| | | \\cos(b) /
| ||| \2 4 /| /b pi\ | |
| |||1 + ------------|*cos|- + --| | |
| ||| 2/b pi\| \2 4 / | |
| ||| cos |- + --|| | |
\ \\\ \2 4 // / /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 cos ( b 2 − π 4 ) ( cos 2 ( b 2 − π 4 ) cos 2 ( b 2 + π 4 ) + 1 ) cos ( b 2 + π 4 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − cos ( b ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − 1 cos ( b ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \cos{\left(\frac{b}{2} - \frac{\pi}{4} \right)}}{\left(\frac{\cos^{2}{\left(\frac{b}{2} - \frac{\pi}{4} \right)}}{\cos^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} + 1\right) \cos{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\cos{\left(b \right)}} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − ( c o s 2 ( 2 b + 4 π ) c o s 2 ( 2 b − 4 π ) + 1 ) c o s ( 2 b + 4 π ) 2 c o s ( 2 b − 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − cos ( b ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − c o s ( b ) 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) // / b \\
|| zoo for And|im(b) = 0, - mod pi = 0||
/ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ / // 0 for And(im(b) = 0, b mod pi = 0)\\ \ || \ 2 /|
| || | | || || | || |
| || 2/b\ | | || /b\ || | || 2 |
| ||-1 + cot |-| | | || 2*cot|-| || /b pi\| ||/ 2/b\\ |
|- 4*|< \2/ | + |1 + |< \2/ ||*cot|- + --||*|<|1 + cot |-|| |
| ||------------ otherwise | | ||----------- otherwise || \2 4 /| ||\ \4// |
| || 2/b\ | | || 2/b\ || | ||-------------- otherwise |
| ||1 + cot |-| | | ||1 + cot |-| || | || 2/b\ |
\ \\ \2/ / \ \\ \2/ // / || 4*cot |-| |
|| \4/ |
\\ /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
/ 2/b\\
5*|1 - cot |-||
\ \2// ( ( ( ( { 0 for im ( b ) = 0 ∧ b m o d π = 0 2 cot ( b 2 ) cot 2 ( b 2 ) + 1 otherwise ) + 1 ) cot ( b 2 + π 4 ) ) − ( 4 ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cot 2 ( b 2 ) − 1 cot 2 ( b 2 ) + 1 otherwise ) ) ) ( { ∞ ~ for im ( b ) = 0 ∧ b 2 m o d π = 0 ( cot 2 ( b 4 ) + 1 ) 2 4 cot 2 ( b 4 ) otherwise ) 5 ⋅ ( 1 − cot 2 ( b 2 ) ) \frac{\left(\left(\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{b}{2} \right)}}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) + 1\right) \cot{\left(\frac{b}{2} + \frac{\pi}{4} \right)}\right) - \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{b}{2} \right)} - 1}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} \tilde{\infty} & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \frac{b}{2} \bmod \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{b}{4} \right)} + 1\right)^{2}}{4 \cot^{2}{\left(\frac{b}{4} \right)}} & \text{otherwise} \end{cases}\right)}{5 \cdot \left(1 - \cot^{2}{\left(\frac{b}{2} \right)}\right)} 5 ⋅ ( 1 − cot 2 ( 2 b ) ) ⎩ ⎨ ⎧ 0 c o t 2 ( 2 b ) + 1 2 c o t ( 2 b ) for im ( b ) = 0 ∧ b mod π = 0 otherwise + 1 cot ( 2 b + 4 π ) − 4 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 b ) + 1 c o t 2 ( 2 b ) − 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ⎩ ⎨ ⎧ ∞ ~ 4 c o t 2 ( 4 b ) ( c o t 2 ( 4 b ) + 1 ) 2 for im ( b ) = 0 ∧ 2 b mod π = 0 otherwise / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | |
| || / b pi\ | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\|
| || -2*csc|- - + --| | || || // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || \ 2 4 / | || -1 || || |
|- |<-------------------------------- otherwise | + 4*|<----------- otherwise ||*|< /pi \ |
| ||/ 2/ b pi\\ | || /pi \ || ||-csc|-- - b| otherwise |
| ||| csc |- - + --|| | ||csc|-- - b| || \\ \2 / /
| ||| \ 2 4 /| /b pi\ | \\ \2 / /|
| |||1 + --------------|*csc|- + --| | |
| ||| 2/b pi\ | \2 4 / | |
| ||| csc |- + --| | | |
\ \\\ \2 4 / / / /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 csc ( − b 2 + π 4 ) ( csc 2 ( − b 2 + π 4 ) csc 2 ( b 2 + π 4 ) + 1 ) csc ( b 2 + π 4 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − 1 csc ( − b + π 2 ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − csc ( − b + π 2 ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \csc{\left(- \frac{b}{2} + \frac{\pi}{4} \right)}}{\left(\frac{\csc^{2}{\left(- \frac{b}{2} + \frac{\pi}{4} \right)}}{\csc^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} + 1\right) \csc{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \frac{1}{\csc{\left(- b + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \csc{\left(- b + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − ( c s c 2 ( 2 b + 4 π ) c s c 2 ( − 2 b + 4 π ) + 1 ) c s c ( 2 b + 4 π ) 2 c s c ( − 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − c s c ( − b + 2 π ) 1 for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − csc ( − b + 2 π ) for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) / / 1 \ /b pi\\
| |1 + -----------|*sec|- - --||
| | / pi\| \2 4 /|
| | sec|b - --|| |
2/b pi\ | 4 \ \ 2 // |
sec |- - --|*|- ------ + -----------------------------|
\2 2 / | sec(b) /b pi\ |
| sec|- + --| |
\ \2 4 / /
-------------------------------------------------------
/ 2/b pi\\
| sec |- - --||
| \2 2 /|
5*|1 - ------------|
| 2/b\ |
| sec |-| |
\ \2/ / ( ( 1 + 1 sec ( b − π 2 ) ) sec ( b 2 − π 4 ) sec ( b 2 + π 4 ) − 4 sec ( b ) ) sec 2 ( b 2 − π 2 ) 5 ⋅ ( 1 − sec 2 ( b 2 − π 2 ) sec 2 ( b 2 ) ) \frac{\left(\frac{\left(1 + \frac{1}{\sec{\left(b - \frac{\pi}{2} \right)}}\right) \sec{\left(\frac{b}{2} - \frac{\pi}{4} \right)}}{\sec{\left(\frac{b}{2} + \frac{\pi}{4} \right)}} - \frac{4}{\sec{\left(b \right)}}\right) \sec^{2}{\left(\frac{b}{2} - \frac{\pi}{2} \right)}}{5 \cdot \left(1 - \frac{\sec^{2}{\left(\frac{b}{2} - \frac{\pi}{2} \right)}}{\sec^{2}{\left(\frac{b}{2} \right)}}\right)} 5 ⋅ ( 1 − s e c 2 ( 2 b ) s e c 2 ( 2 b − 2 π ) ) s e c ( 2 b + 4 π ) ( 1 + s e c ( b − 2 π ) 1 ) s e c ( 2 b − 4 π ) − s e c ( b ) 4 sec 2 ( 2 b − 2 π ) / / /b\\ \
| |1 - tan|-||*(1 + sin(b))|
/1 1 \ | \ \2// |
2*|- - --------|*|-4*cos(b) + -------------------------|
\2 2*cos(b)/ | /b\ |
| 1 + tan|-| |
\ \2/ /
--------------------------------------------------------
5*(1 - cos(b)) 2 ⋅ ( 1 2 − 1 2 cos ( b ) ) ( ( 1 − tan ( b 2 ) ) ( sin ( b ) + 1 ) tan ( b 2 ) + 1 − 4 cos ( b ) ) 5 ⋅ ( 1 − cos ( b ) ) \frac{2 \cdot \left(\frac{1}{2} - \frac{1}{2 \cos{\left(b \right)}}\right) \left(\frac{\left(1 - \tan{\left(\frac{b}{2} \right)}\right) \left(\sin{\left(b \right)} + 1\right)}{\tan{\left(\frac{b}{2} \right)} + 1} - 4 \cos{\left(b \right)}\right)}{5 \cdot \left(1 - \cos{\left(b \right)}\right)} 5 ⋅ ( 1 − cos ( b ) ) 2 ⋅ ( 2 1 − 2 c o s ( b ) 1 ) ( t a n ( 2 b ) + 1 ( 1 − t a n ( 2 b ) ) ( s i n ( b ) + 1 ) − 4 cos ( b ) ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | |
| || / /b\\ | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
|- |<-(1 - sin(b))*|1 + tan|-|| | + 4*|< ||*|< |
| || \ \2// | \\-cos(b) otherwise /| \\-sec(b) otherwise /
| ||--------------------------- otherwise | |
| || /b\ | |
| || 1 - tan|-| | |
\ \\ \2/ / /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − ( 1 − sin ( b ) ) ( tan ( b 2 ) + 1 ) 1 − tan ( b 2 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − cos ( b ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − sec ( b ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(1 - \sin{\left(b \right)}\right) \left(\tan{\left(\frac{b}{2} \right)} + 1\right)}{1 - \tan{\left(\frac{b}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \sec{\left(b \right)} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − 1 − t a n ( 2 b ) ( 1 − s i n ( b ) ) ( t a n ( 2 b ) + 1 ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − cos ( b ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − sec ( b ) for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) / // / / pi\ \\ \ // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| || |
|- |< \ \ 2 / /| + 4*|< ||*|< -1 |
| || | \\-cos(b) otherwise /| ||------ otherwise |
\ \\-cos(b) otherwise / / \\cos(b) /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − cos ( b ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − cos ( b ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − 1 cos ( b ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \cos{\left(b \right)} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\cos{\left(b \right)}} & \text{otherwise} \end{cases}\right)}{5} 5 ( ( − { 0 − cos ( b ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise ) + ( 4 ( { 1 − cos ( b ) for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ) ( { 1 − c o s ( b ) 1 for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| | // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
| || | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\| || |
| || /b pi\ | || || || // 1 for And(im(b) = 0, b mod 2*pi = 0)\ |
|- |< -2*tan|- + --| | + 4*|< // 1 for And(im(b) = 0, b mod 2*pi = 0)\ ||*|< || | |
| || \2 4 / | ||-|< | otherwise || ||-|< 1 | otherwise |
| ||---------------- otherwise | \\ \\cos(b) otherwise / /| || ||------ otherwise | |
| || 2/b pi\ | | \\ \\cos(b) / /
| ||1 + tan |- + --| | |
\ \\ \2 4 / / /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 tan ( b 2 + π 4 ) tan 2 ( b 2 + π 4 ) + 1 otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cos ( b ) otherwise otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 1 cos ( b ) otherwise otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\cos{\left(b \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{1}{\cos{\left(b \right)}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − t a n 2 ( 2 b + 4 π ) + 1 2 t a n ( 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + 4 ⎩ ⎨ ⎧ 1 − { 1 cos ( b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ⎩ ⎨ ⎧ 1 − { 1 c o s ( b ) 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise / 1 4 \
-|----------- - ------|*sec(b)
| /pi \ sec(b)|
|csc|-- - b| |
\ \2 / /
-------------------------------
5 − ( − 4 sec ( b ) + 1 csc ( − b + π 2 ) ) sec ( b ) 5 - \frac{\left(- \frac{4}{\sec{\left(b \right)}} + \frac{1}{\csc{\left(- b + \frac{\pi}{2} \right)}}\right) \sec{\left(b \right)}}{5} − 5 ( − s e c ( b ) 4 + c s c ( − b + 2 π ) 1 ) sec ( b ) / / 1 \\
| 4*|1 - -------||
| | 2/b\||
| | tan |-|||
/ 1 \ | 2 \ \2//|
|1 + -------|*|------------------------------ + ---------------|
| 2/b\| |/ 1 \ /b pi\ 1 |
| tan |-|| ||1 + ------------|*tan|- + --| 1 + ------- |
\ \2// || 2/b pi\| \2 4 / 2/b\ |
|| tan |- + --|| tan |-| |
\\ \2 4 // \2/ /
----------------------------------------------------------------
/ 1 \
5*|1 - -------|
| 2/b\|
| tan |-||
\ \2// ( 1 + 1 tan 2 ( b 2 ) ) ( 4 ⋅ ( 1 − 1 tan 2 ( b 2 ) ) 1 + 1 tan 2 ( b 2 ) + 2 ( 1 + 1 tan 2 ( b 2 + π 4 ) ) tan ( b 2 + π 4 ) ) 5 ⋅ ( 1 − 1 tan 2 ( b 2 ) ) \frac{\left(1 + \frac{1}{\tan^{2}{\left(\frac{b}{2} \right)}}\right) \left(\frac{4 \cdot \left(1 - \frac{1}{\tan^{2}{\left(\frac{b}{2} \right)}}\right)}{1 + \frac{1}{\tan^{2}{\left(\frac{b}{2} \right)}}} + \frac{2}{\left(1 + \frac{1}{\tan^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}\right) \tan{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}\right)}{5 \cdot \left(1 - \frac{1}{\tan^{2}{\left(\frac{b}{2} \right)}}\right)} 5 ⋅ ( 1 − t a n 2 ( 2 b ) 1 ) ( 1 + t a n 2 ( 2 b ) 1 ) 1 + t a n 2 ( 2 b ) 1 4 ⋅ ( 1 − t a n 2 ( 2 b ) 1 ) + ( 1 + t a n 2 ( 2 b + 4 π ) 1 ) t a n ( 2 b + 4 π ) 2 / / pi\\ /b pi\
|1 + cos|b - --||*cos|- + --|
\ \ 2 // \2 4 /
-4*cos(b) + -----------------------------
/b pi\
cos|- - --|
\2 4 /
-----------------------------------------
/ 2/b\ \
| cos |-| |
| \2/ | 2/b pi\
5*|1 - ------------|*cos |- - --|
| 2/b pi\| \2 2 /
| cos |- - --||
\ \2 2 // ( cos ( b − π 2 ) + 1 ) cos ( b 2 + π 4 ) cos ( b 2 − π 4 ) − 4 cos ( b ) 5 ( − cos 2 ( b 2 ) cos 2 ( b 2 − π 2 ) + 1 ) cos 2 ( b 2 − π 2 ) \frac{\frac{\left(\cos{\left(b - \frac{\pi}{2} \right)} + 1\right) \cos{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\cos{\left(\frac{b}{2} - \frac{\pi}{4} \right)}} - 4 \cos{\left(b \right)}}{5 \left(- \frac{\cos^{2}{\left(\frac{b}{2} \right)}}{\cos^{2}{\left(\frac{b}{2} - \frac{\pi}{2} \right)}} + 1\right) \cos^{2}{\left(\frac{b}{2} - \frac{\pi}{2} \right)}} 5 ( − c o s 2 ( 2 b − 2 π ) c o s 2 ( 2 b ) + 1 ) cos 2 ( 2 b − 2 π ) c o s ( 2 b − 4 π ) ( c o s ( b − 2 π ) + 1 ) c o s ( 2 b + 4 π ) − 4 cos ( b ) -(-cos(pi + b) - 4*cos(b))
---------------------------
5*cos(b) − − 4 cos ( b ) − cos ( b + π ) 5 cos ( b ) - \frac{- 4 \cos{\left(b \right)} - \cos{\left(b + \pi \right)}}{5 \cos{\left(b \right)}} − 5 cos ( b ) − 4 cos ( b ) − cos ( b + π ) / // / / pi\ \\ \
| || 0 for And|im(b) = 0, |b + --| mod pi = 0|| |
| || \ \ 2 / /| |
| || | |
| || /b pi\ | |
| || -2*sec|- + --| | // 1 for And(im(b) = 0, (pi - b) mod 2*pi = 0)\|
| || \2 4 / | || || // 1 for And(im(b) = 0, (pi + b) mod 2*pi = 0)\
|- |<------------------------------ otherwise | + 4*|< -1 ||*|< |
| ||/ 2/b pi\\ | ||------ otherwise || \\-sec(b) otherwise /
| ||| sec |- + --|| | \\sec(b) /|
| ||| \2 4 /| /b pi\ | |
| |||1 + ------------|*sec|- - --| | |
| ||| 2/b pi\| \2 4 / | |
| ||| sec |- - --|| | |
\ \\\ \2 4 // / /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5 ( ( − { 0 for im ( b ) = 0 ∧ ( b + π 2 ) m o d π = 0 − 2 sec ( b 2 + π 4 ) ( 1 + sec 2 ( b 2 + π 4 ) sec 2 ( b 2 − π 4 ) ) sec ( b 2 − π 4 ) otherwise ) + ( 4 ( { 1 for im ( b ) = 0 ∧ ( π − b ) m o d 2 π = 0 − 1 sec ( b ) otherwise ) ) ) ( { 1 for im ( b ) = 0 ∧ ( b + π ) m o d 2 π = 0 − sec ( b ) otherwise ) 5 \frac{\left(\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \sec{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\left(1 + \frac{\sec^{2}{\left(\frac{b}{2} + \frac{\pi}{4} \right)}}{\sec^{2}{\left(\frac{b}{2} - \frac{\pi}{4} \right)}}\right) \sec{\left(\frac{b}{2} - \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) + \left(4 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(\pi - b\right) \bmod 2 \pi = 0 \\- \frac{1}{\sec{\left(b \right)}} & \text{otherwise} \end{cases}\right)\right)\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge \left(b + \pi\right) \bmod 2 \pi = 0 \\- \sec{\left(b \right)} & \text{otherwise} \end{cases}\right)}{5} 5 − ⎩ ⎨ ⎧ 0 − ( 1 + s e c 2 ( 2 b − 4 π ) s e c 2 ( 2 b + 4 π ) ) s e c ( 2 b − 4 π ) 2 s e c ( 2 b + 4 π ) for im ( b ) = 0 ∧ ( b + 2 π ) mod π = 0 otherwise + ( 4 ( { 1 − s e c ( b ) 1 for im ( b ) = 0 ∧ ( π − b ) mod 2 π = 0 otherwise ) ) ( { 1 − sec ( b ) for im ( b ) = 0 ∧ ( b + π ) mod 2 π = 0 otherwise )