Подстановка условия
[src] (2*sin(a) + 3*cos(a))/(3*sin(a) - 5*cos(a)) при a = 2 2*sin(a) + 3*cos(a)
-------------------
3*sin(a) - 5*cos(a) 2 sin ( a ) + 3 cos ( a ) 3 sin ( a ) − 5 cos ( a ) \frac{2 \sin{\left(a \right)} + 3 \cos{\left(a \right)}}{3 \sin{\left(a \right)} - 5 \cos{\left(a \right)}} 3 sin ( a ) − 5 cos ( a ) 2 sin ( a ) + 3 cos ( a ) 2*sin(a) + 3*cos(a)
--------------------
-5*cos(a) + 3*sin(a) 2 sin ( a ) + 3 cos ( a ) 3 sin ( a ) − 5 cos ( a ) \frac{2 \sin{\left(a \right)} + 3 \cos{\left(a \right)}}{3 \sin{\left(a \right)} - 5 \cos{\left(a \right)}} 3 sin ( a ) − 5 cos ( a ) 2 sin ( a ) + 3 cos ( a ) 2*sin((2)) + 3*cos((2))
------------------------
-5*cos((2)) + 3*sin((2)) 2 sin ( ( 2 ) ) + 3 cos ( ( 2 ) ) 3 sin ( ( 2 ) ) − 5 cos ( ( 2 ) ) \frac{2 \sin{\left((2) \right)} + 3 \cos{\left((2) \right)}}{3 \sin{\left((2) \right)} - 5 \cos{\left((2) \right)}} 3 sin ( ( 2 ) ) − 5 cos ( ( 2 ) ) 2 sin ( ( 2 ) ) + 3 cos ( ( 2 ) ) 2*sin(2) + 3*cos(2)
--------------------
-5*cos(2) + 3*sin(2) 3 cos ( 2 ) + 2 sin ( 2 ) − 5 cos ( 2 ) + 3 sin ( 2 ) \frac{3 \cos{\left(2 \right)} + 2 \sin{\left(2 \right)}}{- 5 \cos{\left(2 \right)} + 3 \sin{\left(2 \right)}} − 5 cos ( 2 ) + 3 sin ( 2 ) 3 cos ( 2 ) + 2 sin ( 2 )
Тригонометрическая часть
[src] 2 3
----------- + ------
/ pi\ sec(a)
sec|a - --|
\ 2 /
----------------------
5 3
- ------ + -----------
sec(a) / pi\
sec|a - --|
\ 2 / 2 sec ( a − π 2 ) + 3 sec ( a ) 3 sec ( a − π 2 ) − 5 sec ( a ) \frac{\frac{2}{\sec{\left(a - \frac{\pi}{2} \right)}} + \frac{3}{\sec{\left(a \right)}}}{\frac{3}{\sec{\left(a - \frac{\pi}{2} \right)}} - \frac{5}{\sec{\left(a \right)}}} s e c ( a − 2 π ) 3 − s e c ( a ) 5 s e c ( a − 2 π ) 2 + s e c ( a ) 3 / pi\
2*cos|a - --| + 3*cos(a)
\ 2 /
-------------------------
/ pi\
-5*cos(a) + 3*cos|a - --|
\ 2 / 3 cos ( a ) + 2 cos ( a − π 2 ) − 5 cos ( a ) + 3 cos ( a − π 2 ) \frac{3 \cos{\left(a \right)} + 2 \cos{\left(a - \frac{\pi}{2} \right)}}{- 5 \cos{\left(a \right)} + 3 \cos{\left(a - \frac{\pi}{2} \right)}} − 5 cos ( a ) + 3 cos ( a − 2 π ) 3 cos ( a ) + 2 cos ( a − 2 π ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*cot|-| | ||-1 + cot |-| |
2*|< \2/ | + 3*|< \2/ |
||----------- otherwise | ||------------ otherwise |
|| 2/a\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ /
------------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2/a\ | || /a\ |
||-1 + cot |-| | || 2*cot|-| |
- 5*|< \2/ | + 3*|< \2/ |
||------------ otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)} 3 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise + 3 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*tan|-| | ||1 - tan |-| |
2*|< \2/ | + 3*|< \2/ |
||----------- otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + tan |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ /
-----------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2/a\ | || /a\ |
||1 - tan |-| | || 2*tan|-| |
- 5*|< \2/ | + 3*|< \2/ |
||----------- otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + tan |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 − tan 2 ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 − tan 2 ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)} 3 ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 t a n 2 ( 2 a ) + 1 1 − t a n 2 ( 2 a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise 2 ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise + 3 ⎩ ⎨ ⎧ 1 t a n 2 ( 2 a ) + 1 1 − t a n 2 ( 2 a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise 2 3
------ + -----------
csc(a) /pi \
csc|-- - a|
\2 /
----------------------
5 3
- ----------- + ------
/pi \ csc(a)
csc|-- - a|
\2 / 3 csc ( − a + π 2 ) + 2 csc ( a ) − 5 csc ( − a + π 2 ) + 3 csc ( a ) \frac{\frac{3}{\csc{\left(- a + \frac{\pi}{2} \right)}} + \frac{2}{\csc{\left(a \right)}}}{- \frac{5}{\csc{\left(- a + \frac{\pi}{2} \right)}} + \frac{3}{\csc{\left(a \right)}}} − c s c ( − a + 2 π ) 5 + c s c ( a ) 3 c s c ( − a + 2 π ) 3 + c s c ( a ) 2 / pi\
2*sin(a) + 3*sin|a + --|
\ 2 /
--------------------------
/ pi\
- 5*sin|a + --| + 3*sin(a)
\ 2 / 2 sin ( a ) + 3 sin ( a + π 2 ) 3 sin ( a ) − 5 sin ( a + π 2 ) \frac{2 \sin{\left(a \right)} + 3 \sin{\left(a + \frac{\pi}{2} \right)}}{3 \sin{\left(a \right)} - 5 \sin{\left(a + \frac{\pi}{2} \right)}} 3 sin ( a ) − 5 sin ( a + 2 π ) 2 sin ( a ) + 3 sin ( a + 2 π ) // 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || 1 |
2*|< 1 | + 3*|<----------- otherwise |
||------ otherwise | || /pi \ |
\\csc(a) / ||csc|-- - a| |
\\ \2 / /
------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | // 0 for And(im(a) = 0, a mod pi = 0)\
|| 1 | || |
- 5*|<----------- otherwise | + 3*|< 1 |
|| /pi \ | ||------ otherwise |
||csc|-- - a| | \\csc(a) /
\\ \2 / / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( a ) otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 csc ( − a + π 2 ) otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( a ) otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 csc ( − a + π 2 ) otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)} ( 3 ( { 0 c s c ( a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) − ( 5 ( { 1 c s c ( − a + 2 π ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) ( 2 ( { 0 c s c ( a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 3 ( { 1 c s c ( − a + 2 π ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| 1 | || |
2*|<----------- otherwise | + 3*|< 1 |
|| / pi\ | ||------ otherwise |
||sec|a - --| | \\sec(a) /
\\ \ 2 / /
------------------------------------------------------------------------------------------------------
// 0 for And(im(a) = 0, a mod pi = 0)\
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ || |
|| | || 1 |
- 5*|< 1 | + 3*|<----------- otherwise |
||------ otherwise | || / pi\ |
\\sec(a) / ||sec|a - --| |
\\ \ 2 / / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( a − π 2 ) otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 sec ( a ) otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( a − π 2 ) otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 sec ( a ) otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right)} ( 3 ( { 0 s e c ( a − 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) − ( 5 ( { 1 s e c ( a ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) ( 2 ( { 0 s e c ( a − 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 3 ( { 1 s e c ( a ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
2*| ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)} 3 ⎩ ⎨ ⎧ 0 { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise 2 ⎩ ⎨ ⎧ 0 { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise + 3 ⎩ ⎨ ⎧ 1 { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
2*|< / pi\ | + 3*|< |
||cos|a - --| otherwise | \\cos(a) otherwise /
\\ \ 2 / /
------------------------------------------------------------------------------------------------------
// 0 for And(im(a) = 0, a mod pi = 0)\
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ || |
- 5*|< | + 3*|< / pi\ |
\\cos(a) otherwise / ||cos|a - --| otherwise |
\\ \ 2 / / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 cos ( a − π 2 ) otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 cos ( a − π 2 ) otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right)} ( 3 ( { 0 cos ( a − 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) − ( 5 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) ( 2 ( { 0 cos ( a − 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 3 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) / 2/a\\ /a\
3*|1 - tan |-|| 4*tan|-|
\ \2// \2/
--------------- + -----------
2/a\ 2/a\
1 + tan |-| 1 + tan |-|
\2/ \2/
-------------------------------
/ 2/a\\ /a\
5*|1 - tan |-|| 6*tan|-|
\ \2// \2/
- --------------- + -----------
2/a\ 2/a\
1 + tan |-| 1 + tan |-|
\2/ \2/ 3 ⋅ ( 1 − tan 2 ( a 2 ) ) tan 2 ( a 2 ) + 1 + 4 tan ( a 2 ) tan 2 ( a 2 ) + 1 − 5 ⋅ ( 1 − tan 2 ( a 2 ) ) tan 2 ( a 2 ) + 1 + 6 tan ( a 2 ) tan 2 ( a 2 ) + 1 \frac{\frac{3 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} + \frac{4 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1}}{- \frac{5 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} + \frac{6 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1}} − t a n 2 ( 2 a ) + 1 5 ⋅ ( 1 − t a n 2 ( 2 a ) ) + t a n 2 ( 2 a ) + 1 6 t a n ( 2 a ) t a n 2 ( 2 a ) + 1 3 ⋅ ( 1 − t a n 2 ( 2 a ) ) + t a n 2 ( 2 a ) + 1 4 t a n ( 2 a ) // 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
2*|< | + 3*|< / pi\ |
\\sin(a) otherwise / ||sin|a + --| otherwise |
\\ \ 2 / /
------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | // 0 for And(im(a) = 0, a mod pi = 0)\
- 5*|< / pi\ | + 3*|< |
||sin|a + --| otherwise | \\sin(a) otherwise /
\\ \ 2 / / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 sin ( a + π 2 ) otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 sin ( a + π 2 ) otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)} ( 3 ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) − ( 5 ( { 1 sin ( a + 2 π ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) ( 2 ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 3 ( { 1 sin ( a + 2 π ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) 2 3
------ + ------
csc(a) sec(a)
-----------------
5 3
- ------ + ------
sec(a) csc(a) 3 sec ( a ) + 2 csc ( a ) − 5 sec ( a ) + 3 csc ( a ) \frac{\frac{3}{\sec{\left(a \right)}} + \frac{2}{\csc{\left(a \right)}}}{- \frac{5}{\sec{\left(a \right)}} + \frac{3}{\csc{\left(a \right)}}} − s e c ( a ) 5 + c s c ( a ) 3 s e c ( a ) 3 + c s c ( a ) 2 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
||| | ||| |
||| /a\ | ||| 2/a\ |
2*|<| 2*cot|-| | + 3*|<|-1 + cot |-| |
||< \2/ otherwise | ||< \2/ otherwise |
|||----------- otherwise | |||------------ otherwise |
||| 2/a\ | ||| 2/a\ |
|||1 + cot |-| | |||1 + cot |-| |
\\\ \2/ / \\\ \2/ /
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
||/ 1 for And(im(a) = 0, a mod 2*pi = 0) | ||/ 0 for And(im(a) = 0, a mod pi = 0) |
||| | ||| |
||| 2/a\ | ||| /a\ |
- 5*|<|-1 + cot |-| | + 3*|<| 2*cot|-| |
||< \2/ otherwise | ||< \2/ otherwise |
|||------------ otherwise | |||----------- otherwise |
||| 2/a\ | ||| 2/a\ |
|||1 + cot |-| | |||1 + cot |-| |
\\\ \2/ / \\\ \2/ / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)} 3 ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise 2 ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise + 3 ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
2*|< | + 3*|< |
\\sin(a) otherwise / \\cos(a) otherwise /
-------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
- 5*|< | + 3*|< |
\\cos(a) otherwise / \\sin(a) otherwise / ( 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ) + ( 3 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) ( 3 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) \frac{\left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right)}{\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right)} ( 3 ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) − ( 5 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) ( 2 ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 3 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) )