Тригонометрическая часть
[src] sin ( b ) cos ( a ) \sin{\left(b \right)} \cos{\left(a \right)} sin ( b ) cos ( a ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | || | || |
|| /a\ | || 2/b\ | || /a b\ |
|| 2*tan|-| | ||1 - tan |-| | || 2*tan|- + -| |
- |< \2/ |*|< \2/ | + |< \2 2/ |
||----------- otherwise | ||----------- otherwise | ||--------------- otherwise |
|| 2/a\ | || 2/b\ | || 2/a b\ |
||1 + tan |-| | ||1 + tan |-| | ||1 + tan |- + -| |
\\ \2/ / \\ \2/ / \\ \2 2/ / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 2 tan ( a 2 + b 2 ) tan 2 ( a 2 + b 2 ) + 1 otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 1 − tan 2 ( b 2 ) tan 2 ( b 2 ) + 1 otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{b}{2} \right)}}{\tan^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a + 2 b ) + 1 2 t a n ( 2 a + 2 b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise − ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 t a n 2 ( 2 b ) + 1 1 − t a n 2 ( 2 b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise /a b\ /a b\
cos(a + b)*tan|- + -| - cos(b)*sin(a) + tan|- + -|
\2 2/ \2 2/ − sin ( a ) cos ( b ) + cos ( a + b ) tan ( a 2 + b 2 ) + tan ( a 2 + b 2 ) - \sin{\left(a \right)} \cos{\left(b \right)} + \cos{\left(a + b \right)} \tan{\left(\frac{a}{2} + \frac{b}{2} \right)} + \tan{\left(\frac{a}{2} + \frac{b}{2} \right)} − sin ( a ) cos ( b ) + cos ( a + b ) tan ( 2 a + 2 b ) + tan ( 2 a + 2 b ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | // 1 for And(im(b) = 0, b mod 2*pi = 0)\ || |
- |< / pi\ |*|< | + |< / pi\ |
||cos|a - --| otherwise | \\cos(b) otherwise / ||cos|a + b - --| otherwise |
\\ \ 2 / / \\ \ 2 / / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 cos ( a + b − π 2 ) otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 cos ( a − π 2 ) otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cos ( b ) otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\cos{\left(a + b - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right) ( { 0 cos ( a + b − 2 π ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise ) − ( ( { 0 cos ( a − 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) 2/a + b\
4*sin |-----|
sin(a + b) sin(a - b) \ 2 /
- ---------- - ---------- + ------------------------------
2 2 / 4/a + b\\
| 4*sin |-----||
| \ 2 /|
|1 + -------------|*sin(a + b)
| 2 |
\ sin (a + b) / − sin ( a − b ) 2 − sin ( a + b ) 2 + 4 sin 2 ( a + b 2 ) ( 4 sin 4 ( a + b 2 ) sin 2 ( a + b ) + 1 ) sin ( a + b ) - \frac{\sin{\left(a - b \right)}}{2} - \frac{\sin{\left(a + b \right)}}{2} + \frac{4 \sin^{2}{\left(\frac{a + b}{2} \right)}}{\left(\frac{4 \sin^{4}{\left(\frac{a + b}{2} \right)}}{\sin^{2}{\left(a + b \right)}} + 1\right) \sin{\left(a + b \right)}} − 2 sin ( a − b ) − 2 sin ( a + b ) + ( s i n 2 ( a + b ) 4 s i n 4 ( 2 a + b ) + 1 ) sin ( a + b ) 4 sin 2 ( 2 a + b ) sin(a + b) sin(a - b)
---------- - ----------
2 2 − sin ( a − b ) 2 + sin ( a + b ) 2 - \frac{\sin{\left(a - b \right)}}{2} + \frac{\sin{\left(a + b \right)}}{2} − 2 sin ( a − b ) + 2 sin ( a + b ) / pi\ / pi\
- cos(b)*cos|a - --| + cos|a + b - --|
\ 2 / \ 2 / − cos ( b ) cos ( a − π 2 ) + cos ( a + b − π 2 ) - \cos{\left(b \right)} \cos{\left(a - \frac{\pi}{2} \right)} + \cos{\left(a + b - \frac{\pi}{2} \right)} − cos ( b ) cos ( a − 2 π ) + cos ( a + b − 2 π ) 1 1
---------- - ------------------
csc(a + b) /pi \
csc(a)*csc|-- - b|
\2 / 1 csc ( a + b ) − 1 csc ( a ) csc ( − b + π 2 ) \frac{1}{\csc{\left(a + b \right)}} - \frac{1}{\csc{\left(a \right)} \csc{\left(- b + \frac{\pi}{2} \right)}} csc ( a + b ) 1 − csc ( a ) csc ( − b + 2 π ) 1 2/a b\
4*sin |- + -|
sin(a + b) sin(a - b) \2 2/
- ---------- - ---------- + ------------------------------
2 2 / 4/a b\\
| 4*sin |- + -||
| \2 2/|
|1 + -------------|*sin(a + b)
| 2 |
\ sin (a + b) / − sin ( a − b ) 2 − sin ( a + b ) 2 + 4 sin 2 ( a 2 + b 2 ) ( 4 sin 4 ( a 2 + b 2 ) sin 2 ( a + b ) + 1 ) sin ( a + b ) - \frac{\sin{\left(a - b \right)}}{2} - \frac{\sin{\left(a + b \right)}}{2} + \frac{4 \sin^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\left(\frac{4 \sin^{4}{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\sin^{2}{\left(a + b \right)}} + 1\right) \sin{\left(a + b \right)}} − 2 sin ( a − b ) − 2 sin ( a + b ) + ( s i n 2 ( a + b ) 4 s i n 4 ( 2 a + 2 b ) + 1 ) sin ( a + b ) 4 sin 2 ( 2 a + 2 b ) // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| |
|| /a b\ |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ || 2*tan|- + -| |
- |< |*|< | + |< \2 2/ |
\\sin(a) otherwise / \\cos(b) otherwise / ||--------------- otherwise |
|| 2/a b\ |
||1 + tan |- + -| |
\\ \2 2/ / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 2 tan ( a 2 + b 2 ) tan 2 ( a 2 + b 2 ) + 1 otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cos ( b ) otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right) ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a + 2 b ) + 1 2 t a n ( 2 a + 2 b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise − ( ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) 1 1
--------------- - ------------------
/ pi\ / pi\
sec|a + b - --| sec(b)*sec|a - --|
\ 2 / \ 2 / 1 sec ( a + b − π 2 ) − 1 sec ( b ) sec ( a − π 2 ) \frac{1}{\sec{\left(a + b - \frac{\pi}{2} \right)}} - \frac{1}{\sec{\left(b \right)} \sec{\left(a - \frac{\pi}{2} \right)}} sec ( a + b − 2 π ) 1 − sec ( b ) sec ( a − 2 π ) 1 / pi\
sin(b)*sin|a + --|
\ 2 / sin ( b ) sin ( a + π 2 ) \sin{\left(b \right)} \sin{\left(a + \frac{\pi}{2} \right)} sin ( b ) sin ( a + 2 π ) // 1 for And(im(b) = 0, b mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
- |< |*|< / pi\ | + |< |
\\sin(a) otherwise / ||sin|b + --| otherwise | \\sin(a + b) otherwise /
\\ \ 2 / / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 sin ( a + b ) otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 sin ( b + π 2 ) otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\sin{\left(a + b \right)} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\sin{\left(b + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) ( { 0 sin ( a + b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise ) − ( ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 sin ( b + 2 π ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | || | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(b) = 0, b mod 2*pi = 0) | ||/ 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0) |
||| | ||| | ||| |
||| /a\ | ||| 2/b\ | ||| /a b\ |
- |<| 2*cot|-| |*|<|-1 + cot |-| | + |<| 2*cot|- + -| |
||< \2/ otherwise | ||< \2/ otherwise | ||< \2 2/ otherwise |
|||----------- otherwise | |||------------ otherwise | |||--------------- otherwise |
||| 2/a\ | ||| 2/b\ | ||| 2/a b\ |
|||1 + cot |-| | |||1 + cot |-| | |||1 + cot |- + -| |
\\\ \2/ / \\\ \2/ / \\\ \2 2/ / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 2 cot ( a 2 + b 2 ) cot 2 ( a 2 + b 2 ) + 1 otherwise otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cot 2 ( b 2 ) − 1 cot 2 ( b 2 ) + 1 otherwise otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{b}{2} \right)} - 1}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a + 2 b ) + 1 2 c o t ( 2 a + 2 b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise − ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 b ) + 1 c o t 2 ( 2 b ) − 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise // 0 for And(im(b) = 0, b mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|< |*|< |
\\sin(b) otherwise / \\cos(a) otherwise / ( { 0 for im ( b ) = 0 ∧ b m o d π = 0 sin ( b ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod \pi = 0 \\\sin{\left(b \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right) ( { 0 sin ( b ) for im ( b ) = 0 ∧ b mod π = 0 otherwise ) ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
- |< |*|< | + |< |
\\sin(a) otherwise / \\cos(b) otherwise / \\sin(a + b) otherwise / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 sin ( a + b ) otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cos ( b ) otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\sin{\left(a + b \right)} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\cos{\left(b \right)} & \text{otherwise} \end{cases}\right)\right) ( { 0 sin ( a + b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise ) − ( ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) / pi\ / pi\ /a b pi\
cos|a + b - --| cos|a - b - --| 2*cos|- + - - --|
\ 2 / \ 2 / \2 2 2 /
- --------------- - --------------- + ---------------------------------
2 2 / 2/a b pi\\
| cos |- + - - --||
| \2 2 2 /| /a b\
|1 + ----------------|*cos|- + -|
| 2/a b\ | \2 2/
| cos |- + -| |
\ \2 2/ / − cos ( a − b − π 2 ) 2 − cos ( a + b − π 2 ) 2 + 2 cos ( a 2 + b 2 − π 2 ) ( 1 + cos 2 ( a 2 + b 2 − π 2 ) cos 2 ( a 2 + b 2 ) ) cos ( a 2 + b 2 ) - \frac{\cos{\left(a - b - \frac{\pi}{2} \right)}}{2} - \frac{\cos{\left(a + b - \frac{\pi}{2} \right)}}{2} + \frac{2 \cos{\left(\frac{a}{2} + \frac{b}{2} - \frac{\pi}{2} \right)}}{\left(1 + \frac{\cos^{2}{\left(\frac{a}{2} + \frac{b}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)}}\right) \cos{\left(\frac{a}{2} + \frac{b}{2} \right)}} − 2 cos ( a − b − 2 π ) − 2 cos ( a + b − 2 π ) + ( 1 + c o s 2 ( 2 a + 2 b ) c o s 2 ( 2 a + 2 b − 2 π ) ) cos ( 2 a + 2 b ) 2 cos ( 2 a + 2 b − 2 π ) / 0 for And(-im(b) + im(a) = 0, (a - b) mod pi = 0) / 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0) /a b\
< < 2*tan|- + -|
\sin(a - b) otherwise \sin(a + b) otherwise \2 2/
- ------------------------------------------------------------ - ----------------------------------------------------------- + ---------------
2 2 2/a b\
1 + tan |- + -|
\2 2/ ( − { 0 for im ( a ) − im ( b ) = 0 ∧ ( a − b ) m o d π = 0 sin ( a − b ) otherwise 2 ) − ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 sin ( a + b ) otherwise 2 ) + 2 tan ( a 2 + b 2 ) tan 2 ( a 2 + b 2 ) + 1 \left(- \frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} - \operatorname{im}{\left(b\right)} = 0 \wedge \left(a - b\right) \bmod \pi = 0 \\\sin{\left(a - b \right)} & \text{otherwise} \end{cases}}{2}\right) - \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\sin{\left(a + b \right)} & \text{otherwise} \end{cases}}{2}\right) + \frac{2 \tan{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} − 2 { 0 sin ( a − b ) for im ( a ) − im ( b ) = 0 ∧ ( a − b ) mod π = 0 otherwise − 2 { 0 sin ( a + b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise + tan 2 ( 2 a + 2 b ) + 1 2 tan ( 2 a + 2 b ) /a b\ / 2/b\\ /a\
2*tan|- + -| 2*|1 - tan |-||*tan|-|
\2 2/ \ \2// \2/
--------------- - ---------------------------
2/a b\ / 2/a\\ / 2/b\\
1 + tan |- + -| |1 + tan |-||*|1 + tan |-||
\2 2/ \ \2// \ \2// − 2 ⋅ ( 1 − tan 2 ( b 2 ) ) tan ( a 2 ) ( tan 2 ( a 2 ) + 1 ) ( tan 2 ( b 2 ) + 1 ) + 2 tan ( a 2 + b 2 ) tan 2 ( a 2 + b 2 ) + 1 - \frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{b}{2} \right)}\right) \tan{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{b}{2} \right)} + 1\right)} + \frac{2 \tan{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} − ( tan 2 ( 2 a ) + 1 ) ( tan 2 ( 2 b ) + 1 ) 2 ⋅ ( 1 − tan 2 ( 2 b ) ) tan ( 2 a ) + tan 2 ( 2 a + 2 b ) + 1 2 tan ( 2 a + 2 b ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | // 1 for And(im(b) = 0, b mod 2*pi = 0)\ || |
|| 1 | || | || 1 |
- |<----------- otherwise |*|< 1 | + |<--------------- otherwise |
|| / pi\ | ||------ otherwise | || / pi\ |
||sec|a - --| | \\sec(b) / ||sec|a + b - --| |
\\ \ 2 / / \\ \ 2 / / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 1 sec ( a + b − π 2 ) otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( a − π 2 ) otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 1 sec ( b ) otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{1}{\sec{\left(a + b - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(b \right)}} & \text{otherwise} \end{cases}\right)\right) ( { 0 s e c ( a + b − 2 π ) 1 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise ) − ( ( { 0 s e c ( a − 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 s e c ( b ) 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) / 2/a\\ /b\ /b\
2*|-1 + 2*cos |-||*cos|-|*sin|-|
\ \2// \2/ \2/ 2 ⋅ ( 2 cos 2 ( a 2 ) − 1 ) sin ( b 2 ) cos ( b 2 ) 2 \cdot \left(2 \cos^{2}{\left(\frac{a}{2} \right)} - 1\right) \sin{\left(\frac{b}{2} \right)} \cos{\left(\frac{b}{2} \right)} 2 ⋅ ( 2 cos 2 ( 2 a ) − 1 ) sin ( 2 b ) cos ( 2 b ) / 0 for And(-im(b) + im(a) = 0, (a - b) mod pi = 0) / 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)
| |
| /a b\ | /a b\
| 2*cot|- - -| | 2*cot|- + -|
< \2 2/ < \2 2/
|--------------- otherwise |--------------- otherwise
| 2/a b\ | 2/a b\
|1 + cot |- - -| |1 + cot |- + -|
\ \2 2/ \ \2 2/ 2
- ----------------------------------------------------------------- - ---------------------------------------------------------------- + ----------------------------
2 2 / 1 \ /a b\
|1 + -----------|*cot|- + -|
| 2/a b\| \2 2/
| cot |- + -||
\ \2 2// ( − { 0 for im ( a ) − im ( b ) = 0 ∧ ( a − b ) m o d π = 0 2 cot ( a 2 − b 2 ) cot 2 ( a 2 − b 2 ) + 1 otherwise 2 ) − ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 2 cot ( a 2 + b 2 ) cot 2 ( a 2 + b 2 ) + 1 otherwise 2 ) + 2 ( 1 + 1 cot 2 ( a 2 + b 2 ) ) cot ( a 2 + b 2 ) \left(- \frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} - \operatorname{im}{\left(b\right)} = 0 \wedge \left(a - b\right) \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} - \frac{b}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} - \frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}}{2}\right) - \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}}{2}\right) + \frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)}}\right) \cot{\left(\frac{a}{2} + \frac{b}{2} \right)}} − 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a − 2 b ) + 1 2 c o t ( 2 a − 2 b ) for im ( a ) − im ( b ) = 0 ∧ ( a − b ) mod π = 0 otherwise − 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a + 2 b ) + 1 2 c o t ( 2 a + 2 b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise + ( 1 + c o t 2 ( 2 a + 2 b ) 1 ) cot ( 2 a + 2 b ) 2 / pi\
- sin(a)*sin|b + --| + sin(a + b)
\ 2 / − sin ( a ) sin ( b + π 2 ) + sin ( a + b ) - \sin{\left(a \right)} \sin{\left(b + \frac{\pi}{2} \right)} + \sin{\left(a + b \right)} − sin ( a ) sin ( b + 2 π ) + sin ( a + b ) /a b\
2*tan|- + -|
sin(a + b) + sin(a - b) \2 2/
- ----------------------- + ---------------
2 2/a b\
1 + tan |- + -|
\2 2/ − sin ( a − b ) + sin ( a + b ) 2 + 2 tan ( a 2 + b 2 ) tan 2 ( a 2 + b 2 ) + 1 - \frac{\sin{\left(a - b \right)} + \sin{\left(a + b \right)}}{2} + \frac{2 \tan{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} − 2 sin ( a − b ) + sin ( a + b ) + tan 2 ( 2 a + 2 b ) + 1 2 tan ( 2 a + 2 b ) // 0 for And(im(b) = 0, b mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /b\ | || 2/a\ |
|| 2*cot|-| | ||-1 + cot |-| |
|< \2/ |*|< \2/ |
||----------- otherwise | ||------------ otherwise |
|| 2/b\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ / ( { 0 for im ( b ) = 0 ∧ b m o d π = 0 2 cot ( b 2 ) cot 2 ( b 2 ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{b}{2} \right)}}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) ⎩ ⎨ ⎧ 0 c o t 2 ( 2 b ) + 1 2 c o t ( 2 b ) for im ( b ) = 0 ∧ b mod π = 0 otherwise ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise /pi a b\
2*csc|-- - - - -|
1 1 \2 2 2/
- ------------ - ------------ + ---------------------------------
2*csc(a + b) 2*csc(a - b) / 2/pi a b\\
| csc |-- - - - -||
| \2 2 2/| /a b\
|1 + ----------------|*csc|- + -|
| 2/a b\ | \2 2/
| csc |- + -| |
\ \2 2/ / − 1 2 csc ( a + b ) − 1 2 csc ( a − b ) + 2 csc ( − a 2 − b 2 + π 2 ) ( 1 + csc 2 ( − a 2 − b 2 + π 2 ) csc 2 ( a 2 + b 2 ) ) csc ( a 2 + b 2 ) - \frac{1}{2 \csc{\left(a + b \right)}} - \frac{1}{2 \csc{\left(a - b \right)}} + \frac{2 \csc{\left(- \frac{a}{2} - \frac{b}{2} + \frac{\pi}{2} \right)}}{\left(1 + \frac{\csc^{2}{\left(- \frac{a}{2} - \frac{b}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)}}\right) \csc{\left(\frac{a}{2} + \frac{b}{2} \right)}} − 2 csc ( a + b ) 1 − 2 csc ( a − b ) 1 + ( 1 + c s c 2 ( 2 a + 2 b ) c s c 2 ( − 2 a − 2 b + 2 π ) ) csc ( 2 a + 2 b ) 2 csc ( − 2 a − 2 b + 2 π ) // 1 for And(im(b) = 0, b mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | || 1 | || |
- |< 1 |*|<----------- otherwise | + |< 1 |
||------ otherwise | || /pi \ | ||---------- otherwise |
\\csc(a) / ||csc|-- - b| | \\csc(a + b) /
\\ \2 / / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 1 csc ( a + b ) otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( a ) otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 1 csc ( − b + π 2 ) otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{1}{\csc{\left(a + b \right)}} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- b + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) ( { 0 c s c ( a + b ) 1 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise ) − ( ( { 0 c s c ( a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 c s c ( − b + 2 π ) 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise ) ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | || | || |
|| /a\ | || 2/b\ | || /a b\ |
|| 2*cot|-| | ||-1 + cot |-| | || 2*cot|- + -| |
- |< \2/ |*|< \2/ | + |< \2 2/ |
||----------- otherwise | ||------------ otherwise | ||--------------- otherwise |
|| 2/a\ | || 2/b\ | || 2/a b\ |
||1 + cot |-| | ||1 + cot |-| | ||1 + cot |- + -| |
\\ \2/ / \\ \2/ / \\ \2 2/ / ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 2 cot ( a 2 + b 2 ) cot 2 ( a 2 + b 2 ) + 1 otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cot 2 ( b 2 ) − 1 cot 2 ( b 2 ) + 1 otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{b}{2} \right)} - 1}{\cot^{2}{\left(\frac{b}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a + 2 b ) + 1 2 c o t ( 2 a + 2 b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise − ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 c o t 2 ( 2 b ) + 1 c o t 2 ( 2 b ) − 1 for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise 1
------------------
/pi \
csc(b)*csc|-- - a|
\2 / 1 csc ( b ) csc ( − a + π 2 ) \frac{1}{\csc{\left(b \right)} \csc{\left(- a + \frac{\pi}{2} \right)}} csc ( b ) csc ( − a + 2 π ) 1 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(b) = 0, b mod 2*pi = 0)\ // 0 for And(im(a) + im(b) = 0, (a + b) mod pi = 0)\
|| | || | || |
- | ( { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 { 0 for im ( a ) + im ( b ) = 0 ∧ ( a + b ) m o d π = 0 sin ( a + b ) otherwise otherwise ) − ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise otherwise ) ( { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 { 1 for im ( b ) = 0 ∧ b m o d 2 π = 0 cos ( b ) otherwise otherwise ) ) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(b\right)} = 0 \wedge \left(a + b\right) \bmod \pi = 0 \\\sin{\left(a + b \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) - \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\cos{\left(b \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) ⎩ ⎨ ⎧ 0 { 0 sin ( a + b ) for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise for im ( a ) + im ( b ) = 0 ∧ ( a + b ) mod π = 0 otherwise − ⎩ ⎨ ⎧ 0 { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 cos ( b ) for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise for im ( b ) = 0 ∧ b mod 2 π = 0 otherwise /a b\
2*sec|- + -|
1 1 \2 2/
- ----------------- - ----------------- + --------------------------------------
/ pi\ / pi\ / 2/a b\ \
2*sec|a + b - --| 2*sec|a - b - --| | sec |- + -| |
\ 2 / \ 2 / | \2 2/ | /a b pi\
|1 + ----------------|*sec|- + - - --|
| 2/a b pi\| \2 2 2 /
| sec |- + - - --||
\ \2 2 2 // − 1 2 sec ( a + b − π 2 ) − 1 2 sec ( a − b − π 2 ) + 2 sec ( a 2 + b 2 ) ( sec 2 ( a 2 + b 2 ) sec 2 ( a 2 + b 2 − π 2 ) + 1 ) sec ( a 2 + b 2 − π 2 ) - \frac{1}{2 \sec{\left(a + b - \frac{\pi}{2} \right)}} - \frac{1}{2 \sec{\left(a - b - \frac{\pi}{2} \right)}} + \frac{2 \sec{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\left(\frac{\sec^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\sec^{2}{\left(\frac{a}{2} + \frac{b}{2} - \frac{\pi}{2} \right)}} + 1\right) \sec{\left(\frac{a}{2} + \frac{b}{2} - \frac{\pi}{2} \right)}} − 2 sec ( a + b − 2 π ) 1 − 2 sec ( a − b − 2 π ) 1 + ( s e c 2 ( 2 a + 2 b − 2 π ) s e c 2 ( 2 a + 2 b ) + 1 ) sec ( 2 a + 2 b − 2 π ) 2 sec ( 2 a + 2 b ) /a b\ /a b\
tan|- + -| tan|- - -|
\2 2/ \2 2/
--------------- - ---------------
2/a b\ 2/a b\
1 + tan |- + -| 1 + tan |- - -|
\2 2/ \2 2/ tan ( a 2 + b 2 ) tan 2 ( a 2 + b 2 ) + 1 − tan ( a 2 − b 2 ) tan 2 ( a 2 − b 2 ) + 1 \frac{\tan{\left(\frac{a}{2} + \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{b}{2} \right)} + 1} - \frac{\tan{\left(\frac{a}{2} - \frac{b}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} - \frac{b}{2} \right)} + 1} tan 2 ( 2 a + 2 b ) + 1 tan ( 2 a + 2 b ) − tan 2 ( 2 a − 2 b ) + 1 tan ( 2 a − 2 b ) / 2/a\\ /b\
2*|1 - tan |-||*tan|-|
\ \2// \2/
---------------------------
/ 2/a\\ / 2/b\\
|1 + tan |-||*|1 + tan |-||
\ \2// \ \2// 2 ⋅ ( 1 − tan 2 ( a 2 ) ) tan ( b 2 ) ( tan 2 ( a 2 ) + 1 ) ( tan 2 ( b 2 ) + 1 ) \frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right) \tan{\left(\frac{b}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{b}{2} \right)} + 1\right)} ( tan 2 ( 2 a ) + 1 ) ( tan 2 ( 2 b ) + 1 ) 2 ⋅ ( 1 − tan 2 ( 2 a ) ) tan ( 2 b ) 1 1
---------- - -------------
csc(a + b) csc(a)*sec(b) 1 csc ( a + b ) − 1 csc ( a ) sec ( b ) \frac{1}{\csc{\left(a + b \right)}} - \frac{1}{\csc{\left(a \right)} \sec{\left(b \right)}} csc ( a + b ) 1 − csc ( a ) sec ( b ) 1 1
------------------
/ pi\
sec(a)*sec|b - --|
\ 2 / 1 sec ( a ) sec ( b − π 2 ) \frac{1}{\sec{\left(a \right)} \sec{\left(b - \frac{\pi}{2} \right)}} sec ( a ) sec ( b − 2 π ) 1 / pi\
cos(a)*cos|b - --|
\ 2 / cos ( a ) cos ( b − π 2 ) \cos{\left(a \right)} \cos{\left(b - \frac{\pi}{2} \right)} cos ( a ) cos ( b − 2 π )