Разложить многочлен на множители x^2+x-4

Учитель очень удивится увидев твоё верное решение 😼

Решение

Объединение рациональных выражений [src]
-4 + x*(1 + x)
x(x+1)4x \left(x + 1\right) - 4
Комбинаторика [src]
          2
-4 + x + x 
x2+x4x^{2} + x - 4
Разложение на множители [src]
/          ____\ /          ____\
|    1   \/ 17 | |    1   \/ 17 |
|x + - - ------|*|x + - + ------|
\    2     2   / \    2     2   /
(x+(12172))(x+(12+172))\left(x + \left(\frac{1}{2} - \frac{\sqrt{17}}{2}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{17}}{2}\right)\right)
Выделение полного квадрата
Выделим полный квадрат из квадратного трёхчлена
(x2+x)4\left(x^{2} + x\right) - 4
Для этого воспользуемся формулой
ax2+bx+c=a(m+x)2+na x^{2} + b x + c = a \left(m + x\right)^{2} + n
где
m=b2am = \frac{b}{2 a}
n=4acb24an = \frac{4 a c - b^{2}}{4 a}
В нашем случае
a=1a = 1
b=1b = 1
c=4c = -4
Тогда
m=12m = \frac{1}{2}
n=174n = - \frac{17}{4}
Итак,
(x+12)2174\left(x + \frac{1}{2}\right)^{2} - \frac{17}{4}