(sin(8*a)+sin(2*a))/((cos ... (2*a)*cot(5)*a)) если a=2 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
      sin(8*a) + sin(2*a)      
-------------------------------
                              1
(cos(8*a) + cos(2*a)*cot(5)*a) 
sin(2a)+sin(8a)(acos(2a)cot(5)+cos(8a))1\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{\left(a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}\right)^{1}}
Подстановка условия [src]
(sin(8*a) + sin(2*a))/(cos(8*a) + (cos(2*a)*cot(5))*a)^1 при a = 2
(sin(8*a) + sin(2*a))/(cos(8*a) + (cos(2*a)*cot(5))*a)^1
sin(2a)+sin(8a)(acos(2a)cot(5)+cos(8a))1\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{\left(a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}\right)^{1}}
(sin(8*(2)) + sin(2*(2)))/(cos(8*(2)) + (cos(2*(2))*cot(5))*(2))^1
sin(2(2))+sin(8(2))((2)cos(2(2))cot(5)+cos(8(2)))1\frac{\sin{\left (2 (2) \right )} + \sin{\left (8 (2) \right )}}{\left((2) \cos{\left (2 (2) \right )} \cot{\left (5 \right )} + \cos{\left (8 (2) \right )}\right)^{1}}
(sin(8*2) + sin(2*2))/(cos(8*2) + (cos(2*2)*cot(5))*2)^1
sin(22)+sin(28)(cos(28)+2cos(22)cot(5))1\frac{\sin{\left (2 \cdot 2 \right )} + \sin{\left (2 \cdot 8 \right )}}{\left(\cos{\left (2 \cdot 8 \right )} + 2 \cos{\left (2 \cdot 2 \right )} \cot{\left (5 \right )}\right)^{1}}
(sin(4) + sin(16))/(2*cos(4)*cot(5) + cos(16))
sin(4)+sin(16)cos(16)+2cos(4)cot(5)\frac{\sin{\left (4 \right )} + \sin{\left (16 \right )}}{\cos{\left (16 \right )} + 2 \cos{\left (4 \right )} \cot{\left (5 \right )}}
Степени [src]
    sin(2*a) + sin(8*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Численный ответ [src]
(sin(2*a) + sin(8*a))/(-0.295812915532746*a*cos(2*a) + cos(8*a))
Рациональный знаменатель [src]
    sin(2*a) + sin(8*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Объединение рациональных выражений [src]
    sin(2*a) + sin(8*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Общее упрощение [src]
    sin(2*a) + sin(8*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Собрать выражение [src]
    sin(2*a) + sin(8*a)     
----------------------------
cos(2*a)*cot(5)*a + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
          sin(2*a)                       sin(8*a)          
---------------------------- + ----------------------------
a*cos(2*a)*cot(5) + cos(8*a)   a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)acos(2a)cot(5)+cos(8a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}} + \frac{\sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Комбинаторика [src]
    sin(2*a) + sin(8*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Общий знаменатель [src]
    sin(2*a) + sin(8*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Тригонометрическая часть [src]
    sin(8*a) + sin(2*a)     
----------------------------
a*cos(2*a)*cot(5) + cos(8*a)
sin(2a)+sin(8a)acos(2a)cot(5)+cos(8a)\frac{\sin{\left (2 a \right )} + \sin{\left (8 a \right )}}{a \cos{\left (2 a \right )} \cot{\left (5 \right )} + \cos{\left (8 a \right )}}
Раскрыть выражение [src]
               5       3           7                                    7                   3       5          
       - 56*cos (a)*sin (a) - 8*sin (a)*cos(a) + 2*cos(a)*sin(a) + 8*cos (a)*sin(a) + 56*cos (a)*sin (a)       
---------------------------------------------------------------------------------------------------------------
   8         8            2       6            6       2            4       4        /   2         2   \       
cos (a) + sin (a) - 28*cos (a)*sin (a) - 28*cos (a)*sin (a) + 70*cos (a)*sin (a) + a*\cos (a) - sin (a)/*cot(5)
8sin7(a)cos(a)+56sin5(a)cos3(a)56sin3(a)cos5(a)+8sin(a)cos7(a)+2sin(a)cos(a)a(sin2(a)+cos2(a))cot(5)+sin8(a)28sin6(a)cos2(a)+70sin4(a)cos4(a)28sin2(a)cos6(a)+cos8(a)\frac{- 8 \sin^{7}{\left (a \right )} \cos{\left (a \right )} + 56 \sin^{5}{\left (a \right )} \cos^{3}{\left (a \right )} - 56 \sin^{3}{\left (a \right )} \cos^{5}{\left (a \right )} + 8 \sin{\left (a \right )} \cos^{7}{\left (a \right )} + 2 \sin{\left (a \right )} \cos{\left (a \right )}}{a \left(- \sin^{2}{\left (a \right )} + \cos^{2}{\left (a \right )}\right) \cot{\left (5 \right )} + \sin^{8}{\left (a \right )} - 28 \sin^{6}{\left (a \right )} \cos^{2}{\left (a \right )} + 70 \sin^{4}{\left (a \right )} \cos^{4}{\left (a \right )} - 28 \sin^{2}{\left (a \right )} \cos^{6}{\left (a \right )} + \cos^{8}{\left (a \right )}}