Тригонометрическая часть
[src] // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|< / pi\ |*|< |*cos(a)
||cos|a - --| otherwise | \\cos(a) otherwise /
\\ \ 2 / /
-1 + -----------------------------------------------------------------------------------------------------
/ pi\
cos|a - --|
\ 2 / ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 cos ( a − π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) cos ( a ) cos ( a − π 2 ) ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right) \cos{\left(a \right)}}{\cos{\left(a - \frac{\pi}{2} \right)}}\right) - 1 cos ( a − 2 π ) ( { 0 cos ( a − 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) cos ( a ) − 1 2/ pi\
-cos |a - --|
\ 2 / − cos 2 ( a − π 2 ) - \cos^{2}{\left(a - \frac{\pi}{2} \right)} − cos 2 ( a − 2 π ) -1
------------
2/ pi\
sec |a - --|
\ 2 / − 1 sec 2 ( a − π 2 ) - \frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} − sec 2 ( a − 2 π ) 1 // 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
|< |*|< / pi\ |*sin(2*a)
\\sin(a) otherwise / ||sin|a + --| otherwise |
\\ \ 2 / /
-1 + -------------------------------------------------------------------------------------------------------
2
2*sin (a) ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 sin ( a + π 2 ) otherwise ) sin ( 2 a ) 2 sin 2 ( a ) ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \sin{\left(2 a \right)}}{2 \sin^{2}{\left(a \right)}}\right) - 1 2 sin 2 ( a ) ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 sin ( a + 2 π ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) sin ( 2 a ) − 1 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
||| | ||| |
||| /a\ | ||| 2/a\ |
-1 + |<| 2*cot|-| |*|<|-1 + cot |-| |*cot(a)
||< \2/ otherwise | ||< \2/ otherwise |
|||----------- otherwise | |||------------ otherwise |
||| 2/a\ | ||| 2/a\ |
|||1 + cot |-| | |||1 + cot |-| |
\\\ \2/ / \\\ \2/ / ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise otherwise ) cot ( a ) ) − 1 \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1 ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise cot ( a ) − 1 cos(a)*sin(2*a)
-1 + ---------------
2*sin(a) − 1 + sin ( 2 a ) cos ( a ) 2 sin ( a ) -1 + \frac{\sin{\left(2 a \right)} \cos{\left(a \right)}}{2 \sin{\left(a \right)}} − 1 + 2 sin ( a ) sin ( 2 a ) cos ( a ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\
|| |
|| 2*cot(a) |
|<----------- otherwise |*cot(a)
|| 2 |
||1 + cot (a) |
\\ /
-1 + ---------------------------------------------------------
2 ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 cot ( a ) cot 2 ( a ) + 1 otherwise ) cot ( a ) 2 ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}}{2}\right) - 1 2 ( { 0 c o t 2 ( a ) + 1 2 c o t ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) cot ( a ) − 1 / pi\
cos(a)*cos|2*a - --|
\ 2 /
-1 + --------------------
/ pi\
2*cos|a - --|
\ 2 / cos ( a ) cos ( 2 a − π 2 ) 2 cos ( a − π 2 ) − 1 \frac{\cos{\left(a \right)} \cos{\left(2 a - \frac{\pi}{2} \right)}}{2 \cos{\left(a - \frac{\pi}{2} \right)}} - 1 2 cos ( a − 2 π ) cos ( a ) cos ( 2 a − 2 π ) − 1 sin(2*a)
-1 + --------
2*tan(a) sin ( 2 a ) 2 tan ( a ) − 1 \frac{\sin{\left(2 a \right)}}{2 \tan{\left(a \right)}} - 1 2 tan ( a ) sin ( 2 a ) − 1 // 0 for And(im(a) = 0, a mod pi = 0)\
|| |
|| 2/a\ |
|| 4*cot |-| |
|| \2/ |
-|<-------------- otherwise |
|| 2 |
||/ 2/a\\ |
|||1 + cot |-|| |
||\ \2// |
\\ / − { 0 for im ( a ) = 0 ∧ a m o d π = 0 4 cot 2 ( a 2 ) ( cot 2 ( a 2 ) + 1 ) 2 otherwise - \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} − ⎩ ⎨ ⎧ 0 ( c o t 2 ( 2 a ) + 1 ) 2 4 c o t 2 ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| 1 | || | / pi\
|<----------- otherwise |*|< 1 |*sec|a - --|
|| / pi\ | ||------ otherwise | \ 2 /
||sec|a - --| | \\sec(a) /
\\ \ 2 / /
-1 + ----------------------------------------------------------------------------------------------------------
sec(a) ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( a − π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 sec ( a ) otherwise ) sec ( a − π 2 ) sec ( a ) ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right) \sec{\left(a - \frac{\pi}{2} \right)}}{\sec{\left(a \right)}}\right) - 1 sec ( a ) ( { 0 s e c ( a − 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 s e c ( a ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) sec ( a − 2 π ) − 1 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
-1 + | ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise otherwise ) cot ( a ) ) − 1 \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1 ⎩ ⎨ ⎧ 0 { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise cot ( a ) − 1 − sin 2 ( a ) - \sin^{2}{\left(a \right)} − sin 2 ( a ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*tan|-| | ||1 - tan |-| |
|< \2/ |*|< \2/ |
||----------- otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + tan |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ /
-1 + ---------------------------------------------------------------------------------------------------
tan(a) ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 − tan 2 ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) tan ( a ) ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)}{\tan{\left(a \right)}}\right) - 1 tan ( a ) ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 t a n 2 ( 2 a ) + 1 1 − t a n 2 ( 2 a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise − 1 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
-1 + |< |*|< |*cot(a)
\\sin(a) otherwise / \\cos(a) otherwise / ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) cot ( a ) ) − 1 \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1 ( ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) cot ( a ) ) − 1 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*cot|-| | ||-1 + cot |-| |
-1 + |< \2/ |*|< \2/ |*cot(a)
||----------- otherwise | ||------------ otherwise |
|| 2/a\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ / ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise ) cot ( a ) ) − 1 \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise cot ( a ) − 1 / pi\
sec|a - --|
\ 2 /
-1 + ----------------------
/ pi\
2*sec(a)*sec|2*a - --|
\ 2 / − 1 + sec ( a − π 2 ) 2 sec ( a ) sec ( 2 a − π 2 ) -1 + \frac{\sec{\left(a - \frac{\pi}{2} \right)}}{2 \sec{\left(a \right)} \sec{\left(2 a - \frac{\pi}{2} \right)}} − 1 + 2 sec ( a ) sec ( 2 a − 2 π ) sec ( a − 2 π ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|< |*|< |
\\sin(a) otherwise / \\cos(a) otherwise /
-1 + -----------------------------------------------------------------------------------------
tan(a) ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) tan ( a ) ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)}{\tan{\left(a \right)}}\right) - 1 tan ( a ) ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) − 1 cos 2 ( a ) − 1 \cos^{2}{\left(a \right)} - 1 cos 2 ( a ) − 1 // 0 for And(im(a) = 0, a mod pi = 0)\
|| |
-|< 2 |
||sin (a) otherwise |
\\ / − { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin 2 ( a ) otherwise - \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases} − { 0 sin 2 ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise / pi\
sin(2*a)*sin|a + --|
\ 2 /
-1 + --------------------
2*sin(a) − 1 + sin ( 2 a ) sin ( a + π 2 ) 2 sin ( a ) -1 + \frac{\sin{\left(2 a \right)} \sin{\left(a + \frac{\pi}{2} \right)}}{2 \sin{\left(a \right)}} − 1 + 2 sin ( a ) sin ( 2 a ) sin ( a + 2 π ) // 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || 1 |
|< 1 |*|<----------- otherwise |*csc(a)
||------ otherwise | || /pi \ |
\\csc(a) / ||csc|-- - a| |
\\ \2 / /
-1 + -----------------------------------------------------------------------------------------------------
/pi \
csc|-- - a|
\2 / ( ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 csc ( − a + π 2 ) otherwise ) csc ( a ) csc ( − a + π 2 ) ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \csc{\left(a \right)}}{\csc{\left(- a + \frac{\pi}{2} \right)}}\right) - 1 csc ( − a + 2 π ) ( { 0 c s c ( a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ( { 1 c s c ( − a + 2 π ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) csc ( a ) − 1 // 0 for And(im(a) = 0, 2*a mod pi = 0)\
|< |*cot(a)
\\sin(2*a) otherwise /
-1 + ------------------------------------------------------
2 ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise ) cot ( a ) 2 ) − 1 \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}}{2}\right) - 1 2 ( { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) cot ( a ) − 1 1
-1 + ------------
2/pi \
csc |-- - a|
\2 / − 1 + 1 csc 2 ( − a + π 2 ) -1 + \frac{1}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}} − 1 + csc 2 ( − a + 2 π ) 1 csc(a)
-1 + ----------------------
/pi \
2*csc(2*a)*csc|-- - a|
\2 / csc ( a ) 2 csc ( 2 a ) csc ( − a + π 2 ) − 1 \frac{\csc{\left(a \right)}}{2 \csc{\left(2 a \right)} \csc{\left(- a + \frac{\pi}{2} \right)}} - 1 2 csc ( 2 a ) csc ( − a + 2 π ) csc ( a ) − 1 1
-1 + -----------
2
1 + tan (a) − 1 + 1 tan 2 ( a ) + 1 -1 + \frac{1}{\tan^{2}{\left(a \right)} + 1} − 1 + tan 2 ( a ) + 1 1 1 cos(2*a)
- - + --------
2 2 cos ( 2 a ) 2 − 1 2 \frac{\cos{\left(2 a \right)}}{2} - \frac{1}{2} 2 cos ( 2 a ) − 2 1 − 1 csc 2 ( a ) - \frac{1}{\csc^{2}{\left(a \right)}} − csc 2 ( a ) 1 − 1 + 1 sec 2 ( a ) -1 + \frac{1}{\sec^{2}{\left(a \right)}} − 1 + sec 2 ( a ) 1 / 2/a\\ /a\
2*|1 - tan |-||*tan|-|
\ \2// \2/
-1 + ----------------------
2
/ 2/a\\
|1 + tan |-|| *tan(a)
\ \2// 2 ⋅ ( 1 − tan 2 ( a 2 ) ) tan ( a 2 ) ( tan 2 ( a 2 ) + 1 ) 2 tan ( a ) − 1 \frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right) \tan{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2} \tan{\left(a \right)}} - 1 ( tan 2 ( 2 a ) + 1 ) 2 tan ( a ) 2 ⋅ ( 1 − tan 2 ( 2 a ) ) tan ( 2 a ) − 1 2
sin (2*a)
-1 + ---------
2
4*sin (a) − 1 + sin 2 ( 2 a ) 4 sin 2 ( a ) -1 + \frac{\sin^{2}{\left(2 a \right)}}{4 \sin^{2}{\left(a \right)}} − 1 + 4 sin 2 ( a ) sin 2 ( 2 a ) 2/a\
-4*tan |-|
\2/
--------------
2
/ 2/a\\
|1 + tan |-||
\ \2// − 4 tan 2 ( a 2 ) ( tan 2 ( a 2 ) + 1 ) 2 - \frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} − ( tan 2 ( 2 a ) + 1 ) 2 4 tan 2 ( 2 a )