Подстановка условия
[src]sin(90 + a)*sin(180 - a)*(tan(180 + a) + tan(270 - a)) при a = 3
sin(90 + a)*sin(180 - a)*(tan(180 + a) + tan(270 - a))
$$\left(\tan{\left(270 - a \right)} + \tan{\left(a + 180 \right)}\right) \sin{\left(180 - a \right)} \sin{\left(a + 90 \right)}$$
(-tan(180 + a) + tan(-270 + a))*sin(-180 + a)*sin(90 + a)
$$\left(\tan{\left(a - 270 \right)} - \tan{\left(a + 180 \right)}\right) \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)}$$
(-tan(180 + (3)) + tan(-270 + (3)))*sin(-180 + (3))*sin(90 + (3))
$$\left(\tan{\left((3) - 270 \right)} - \tan{\left((3) + 180 \right)}\right) \sin{\left((3) - 180 \right)} \sin{\left((3) + 90 \right)}$$
(-tan(180 + 3) + tan(-270 + 3))*sin(-180 + 3)*sin(90 + 3)
$$\left(- \tan{\left(3 + 180 \right)} + \tan{\left(-270 + 3 \right)}\right) \sin{\left(-180 + 3 \right)} \sin{\left(3 + 90 \right)}$$
-(-tan(183) - tan(267))*sin(93)*sin(177)
$$- \left(- \tan{\left(183 \right)} - \tan{\left(267 \right)}\right) \sin{\left(93 \right)} \sin{\left(177 \right)}$$
-(-tan(-270 + a) + tan(180 + a))*sin(-180 + a)*sin(90 + a)
$$- \left(- \tan{\left(a - 270 \right)} + \tan{\left(a + 180 \right)}\right) \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)}$$
/ / I*(270 - a) I*(-270 + a)\ / I*(180 + a) I*(-180 - a)\\
/ I*(-180 + a) I*(180 - a)\ / I*(-90 - a) I*(90 + a)\ |I*\- e + e / I*\- e + e /|
-\- e + e /*\- e + e /*|---------------------------------- + ----------------------------------|
| I*(-270 + a) I*(270 - a) I*(-180 - a) I*(180 + a) |
\ e + e e + e /
-------------------------------------------------------------------------------------------------------------------------------------------
4
$$- \frac{\left(\frac{i \left(- e^{i \left(270 - a\right)} + e^{i \left(a - 270\right)}\right)}{e^{i \left(270 - a\right)} + e^{i \left(a - 270\right)}} + \frac{i \left(e^{i \left(- a - 180\right)} - e^{i \left(a + 180\right)}\right)}{e^{i \left(- a - 180\right)} + e^{i \left(a + 180\right)}}\right) \left(e^{i \left(180 - a\right)} - e^{i \left(a - 180\right)}\right) \left(- e^{i \left(- a - 90\right)} + e^{i \left(a + 90\right)}\right)}{4}$$
(tan(180 + a) + tan(270 - a))*sin(90 + a)*sin(180 - a)
Рациональный знаменатель
[src]sin(-180 + a)*sin(90 + a)*tan(-270 + a) - sin(-180 + a)*sin(90 + a)*tan(180 + a)
$$\sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)} \tan{\left(a - 270 \right)} - \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)} \tan{\left(a + 180 \right)}$$
(-tan(180 + a) + tan(-270 + a))*sin(-180 + a)*sin(90 + a)
$$\left(\tan{\left(a - 270 \right)} - \tan{\left(a + 180 \right)}\right) \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)}$$
Объединение рациональных выражений
[src]-(-tan(-270 + a) + tan(180 + a))*sin(-180 + a)*sin(90 + a)
$$- \left(- \tan{\left(a - 270 \right)} + \tan{\left(a + 180 \right)}\right) \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)}$$
(-tan(180 + a) + tan(-270 + a))*sin(-180 + a)*sin(90 + a)
$$\left(\tan{\left(a - 270 \right)} - \tan{\left(a + 180 \right)}\right) \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)}$$
cos(270)*tan(-270 + a) cos(-90 + 2*a)*tan(180 + a) cos(270)*tan(180 + a) cos(-90 + 2*a)*tan(-270 + a)
---------------------- + --------------------------- - --------------------- - ----------------------------
2 2 2 2
$$- \frac{1}{2} \cos{\left (2 a - 90 \right )} \tan{\left (a - 270 \right )} + \frac{1}{2} \cos{\left (2 a - 90 \right )} \tan{\left (a + 180 \right )} + \frac{1}{2} \cos{\left (270 \right )} \tan{\left (a - 270 \right )} - \frac{1}{2} \cos{\left (270 \right )} \tan{\left (a + 180 \right )}$$
(tan(180 + a) + tan(270 - a))*sin(90 + a)*sin(180 - a)
$$\left(\tan{\left (- a + 270 \right )} + \tan{\left (a + 180 \right )}\right) \sin{\left (- a + 180 \right )} \sin{\left (a + 90 \right )}$$
sin(-180 + a)*sin(90 + a)*tan(-270 + a) - sin(-180 + a)*sin(90 + a)*tan(180 + a)
$$\sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)} \tan{\left(a - 270 \right)} - \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)} \tan{\left(a + 180 \right)}$$
Тригонометрическая часть
[src](tan(180 + a) + tan(270 - a))*sin(90 + a)*sin(180 - a)
$$\left(\tan{\left (- a + 270 \right )} + \tan{\left (a + 180 \right )}\right) \sin{\left (- a + 180 \right )} \sin{\left (a + 90 \right )}$$
-(-tan(-270 + a) + tan(180 + a))*sin(-180 + a)*sin(90 + a)
$$- \left(- \tan{\left(a - 270 \right)} + \tan{\left(a + 180 \right)}\right) \sin{\left(a - 180 \right)} \sin{\left(a + 90 \right)}$$
2 2 2 2 2 2 2 2
cos (a)*sin(90)*sin(180)*tan(270) sin (a)*cos(90)*cos(180)*tan(a) cos (a)*sin(90)*sin(180)*tan(180) cos (a)*sin(90)*sin(180)*tan(a) cos (a)*sin(90)*sin(180)*tan(a) sin (a)*cos(90)*cos(180)*tan(270) sin (a)*cos(90)*cos(180)*tan(180) sin (a)*cos(90)*cos(180)*tan(a) cos(90)*cos(a)*sin(180)*sin(a)*tan(270) cos(180)*cos(a)*sin(90)*sin(a)*tan(a) cos(90)*cos(a)*sin(180)*sin(a)*tan(180) cos(90)*cos(a)*sin(180)*sin(a)*tan(a) cos(90)*cos(a)*sin(180)*sin(a)*tan(a) cos(180)*cos(a)*sin(90)*sin(a)*tan(270) cos(180)*cos(a)*sin(90)*sin(a)*tan(180) cos(180)*cos(a)*sin(90)*sin(a)*tan(a)
--------------------------------- + ------------------------------- + --------------------------------- + ------------------------------- - ------------------------------- - --------------------------------- - --------------------------------- - ------------------------------- + --------------------------------------- + ------------------------------------- + --------------------------------------- + ------------------------------------- - ------------------------------------- - --------------------------------------- - --------------------------------------- - -------------------------------------
1 + tan(270)*tan(a) 1 + tan(270)*tan(a) 1 - tan(180)*tan(a) 1 - tan(180)*tan(a) 1 + tan(270)*tan(a) 1 + tan(270)*tan(a) 1 - tan(180)*tan(a) 1 - tan(180)*tan(a) 1 + tan(270)*tan(a) 1 + tan(270)*tan(a) 1 - tan(180)*tan(a) 1 - tan(180)*tan(a) 1 + tan(270)*tan(a) 1 + tan(270)*tan(a) 1 - tan(180)*tan(a) 1 - tan(180)*tan(a)
$$\frac{\sin^{2}{\left(a \right)} \cos{\left(90 \right)} \cos{\left(180 \right)} \tan{\left(a \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} - \frac{\sin^{2}{\left(a \right)} \cos{\left(90 \right)} \cos{\left(180 \right)} \tan{\left(270 \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(90 \right)} \sin{\left(a \right)} \cos{\left(180 \right)} \cos{\left(a \right)} \tan{\left(a \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} - \frac{\sin{\left(180 \right)} \sin{\left(a \right)} \cos{\left(90 \right)} \cos{\left(a \right)} \tan{\left(a \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} - \frac{\sin{\left(90 \right)} \sin{\left(a \right)} \cos{\left(180 \right)} \cos{\left(a \right)} \tan{\left(270 \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(180 \right)} \sin{\left(a \right)} \cos{\left(90 \right)} \cos{\left(a \right)} \tan{\left(270 \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} - \frac{\sin{\left(90 \right)} \sin{\left(180 \right)} \cos^{2}{\left(a \right)} \tan{\left(a \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(90 \right)} \sin{\left(180 \right)} \cos^{2}{\left(a \right)} \tan{\left(270 \right)}}{\tan{\left(270 \right)} \tan{\left(a \right)} + 1} - \frac{\sin^{2}{\left(a \right)} \cos{\left(90 \right)} \cos{\left(180 \right)} \tan{\left(a \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} - \frac{\sin^{2}{\left(a \right)} \cos{\left(90 \right)} \cos{\left(180 \right)} \tan{\left(180 \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(180 \right)} \sin{\left(a \right)} \cos{\left(90 \right)} \cos{\left(a \right)} \tan{\left(a \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} - \frac{\sin{\left(90 \right)} \sin{\left(a \right)} \cos{\left(180 \right)} \cos{\left(a \right)} \tan{\left(a \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(180 \right)} \sin{\left(a \right)} \cos{\left(90 \right)} \cos{\left(a \right)} \tan{\left(180 \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} - \frac{\sin{\left(90 \right)} \sin{\left(a \right)} \cos{\left(180 \right)} \cos{\left(a \right)} \tan{\left(180 \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(90 \right)} \sin{\left(180 \right)} \cos^{2}{\left(a \right)} \tan{\left(a \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1} + \frac{\sin{\left(90 \right)} \sin{\left(180 \right)} \cos^{2}{\left(a \right)} \tan{\left(180 \right)}}{- \tan{\left(180 \right)} \tan{\left(a \right)} + 1}$$