Тригонометрическая часть
[src] // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|< / pi\ |*|< |*cos(a)
||cos|a - --| otherwise | \\cos(a) otherwise /
\\ \ 2 / /
-1 + -----------------------------------------------------------------------------------------------------
/ pi\
cos|a - --|
\ 2 /
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right) \cos{\left(a \right)}}{\cos{\left(a - \frac{\pi}{2} \right)}}\right) - 1$$
2/ pi\
-cos |a - --|
\ 2 /
$$- \cos^{2}{\left(a - \frac{\pi}{2} \right)}$$
-1
------------
2/ pi\
sec |a - --|
\ 2 /
$$- \frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
|< |*|< / pi\ |*sin(2*a)
\\sin(a) otherwise / ||sin|a + --| otherwise |
\\ \ 2 / /
-1 + -------------------------------------------------------------------------------------------------------
2
2*sin (a)
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \sin{\left(2 a \right)}}{2 \sin^{2}{\left(a \right)}}\right) - 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
||| | ||| |
||| /a\ | ||| 2/a\ |
-1 + |<| 2*cot|-| |*|<|-1 + cot |-| |*cot(a)
||< \2/ otherwise | ||< \2/ otherwise |
|||----------- otherwise | |||------------ otherwise |
||| 2/a\ | ||| 2/a\ |
|||1 + cot |-| | |||1 + cot |-| |
\\\ \2/ / \\\ \2/ /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1$$
cos(a)*sin(2*a)
-1 + ---------------
2*sin(a)
$$-1 + \frac{\sin{\left(2 a \right)} \cos{\left(a \right)}}{2 \sin{\left(a \right)}}$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\
|| |
|| 2*cot(a) |
|<----------- otherwise |*cot(a)
|| 2 |
||1 + cot (a) |
\\ /
-1 + ---------------------------------------------------------
2
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}}{2}\right) - 1$$
/ pi\
cos(a)*cos|2*a - --|
\ 2 /
-1 + --------------------
/ pi\
2*cos|a - --|
\ 2 /
$$\frac{\cos{\left(a \right)} \cos{\left(2 a - \frac{\pi}{2} \right)}}{2 \cos{\left(a - \frac{\pi}{2} \right)}} - 1$$
sin(2*a)
-1 + --------
2*tan(a)
$$\frac{\sin{\left(2 a \right)}}{2 \tan{\left(a \right)}} - 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\
|| |
|| 2/a\ |
|| 4*cot |-| |
|| \2/ |
-|<-------------- otherwise |
|| 2 |
||/ 2/a\\ |
|||1 + cot |-|| |
||\ \2// |
\\ /
$$- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}$$
// 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| 1 | || | / pi\
|<----------- otherwise |*|< 1 |*sec|a - --|
|| / pi\ | ||------ otherwise | \ 2 /
||sec|a - --| | \\sec(a) /
\\ \ 2 / /
-1 + ----------------------------------------------------------------------------------------------------------
sec(a)
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right) \sec{\left(a - \frac{\pi}{2} \right)}}{\sec{\left(a \right)}}\right) - 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
-1 + | 0 for And(im(a) = 0, a mod pi = 0) |*| 1 for And(im(a) = 0, a mod 2*pi = 0) |*cot(a)
||< otherwise | ||< otherwise |
\\\sin(a) otherwise / \\\cos(a) otherwise /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1$$
$$- \sin^{2}{\left(a \right)}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*tan|-| | ||1 - tan |-| |
|< \2/ |*|< \2/ |
||----------- otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + tan |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ /
-1 + ---------------------------------------------------------------------------------------------------
tan(a)
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)}{\tan{\left(a \right)}}\right) - 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
-1 + |< |*|< |*cot(a)
\\sin(a) otherwise / \\cos(a) otherwise /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*cot|-| | ||-1 + cot |-| |
-1 + |< \2/ |*|< \2/ |*cot(a)
||----------- otherwise | ||------------ otherwise |
|| 2/a\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}\right) - 1$$
/ pi\
sec|a - --|
\ 2 /
-1 + ----------------------
/ pi\
2*sec(a)*sec|2*a - --|
\ 2 /
$$-1 + \frac{\sec{\left(a - \frac{\pi}{2} \right)}}{2 \sec{\left(a \right)} \sec{\left(2 a - \frac{\pi}{2} \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|< |*|< |
\\sin(a) otherwise / \\cos(a) otherwise /
-1 + -----------------------------------------------------------------------------------------
tan(a)
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)}{\tan{\left(a \right)}}\right) - 1$$
$$\cos^{2}{\left(a \right)} - 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\
|| |
-|< 2 |
||sin (a) otherwise |
\\ /
$$- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}$$
/ pi\
sin(2*a)*sin|a + --|
\ 2 /
-1 + --------------------
2*sin(a)
$$-1 + \frac{\sin{\left(2 a \right)} \sin{\left(a + \frac{\pi}{2} \right)}}{2 \sin{\left(a \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || 1 |
|< 1 |*|<----------- otherwise |*csc(a)
||------ otherwise | || /pi \ |
\\csc(a) / ||csc|-- - a| |
\\ \2 / /
-1 + -----------------------------------------------------------------------------------------------------
/pi \
csc|-- - a|
\2 /
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \csc{\left(a \right)}}{\csc{\left(- a + \frac{\pi}{2} \right)}}\right) - 1$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\
|< |*cot(a)
\\sin(2*a) otherwise /
-1 + ------------------------------------------------------
2
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \cot{\left(a \right)}}{2}\right) - 1$$
1
-1 + ------------
2/pi \
csc |-- - a|
\2 /
$$-1 + \frac{1}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}}$$
csc(a)
-1 + ----------------------
/pi \
2*csc(2*a)*csc|-- - a|
\2 /
$$\frac{\csc{\left(a \right)}}{2 \csc{\left(2 a \right)} \csc{\left(- a + \frac{\pi}{2} \right)}} - 1$$
1
-1 + -----------
2
1 + tan (a)
$$-1 + \frac{1}{\tan^{2}{\left(a \right)} + 1}$$
1 cos(2*a)
- - + --------
2 2
$$\frac{\cos{\left(2 a \right)}}{2} - \frac{1}{2}$$
$$- \frac{1}{\csc^{2}{\left(a \right)}}$$
$$-1 + \frac{1}{\sec^{2}{\left(a \right)}}$$
/ 2/a\\ /a\
2*|1 - tan |-||*tan|-|
\ \2// \2/
-1 + ----------------------
2
/ 2/a\\
|1 + tan |-|| *tan(a)
\ \2//
$$\frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right) \tan{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2} \tan{\left(a \right)}} - 1$$
2
sin (2*a)
-1 + ---------
2
4*sin (a)
$$-1 + \frac{\sin^{2}{\left(2 a \right)}}{4 \sin^{2}{\left(a \right)}}$$
2/a\
-4*tan |-|
\2/
--------------
2
/ 2/a\\
|1 + tan |-||
\ \2//
$$- \frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}}$$