cos(5*n)еслиn=-2 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
cos(5*n)
cos(5n)\cos{\left(5 n \right)}
Подстановка условия [src]
cos(5*n) при n = -2
подставляем
cos(5*n)
cos(5n)\cos{\left(5 n \right)}
cos(5*n)
cos(5n)\cos{\left(5 n \right)}
переменные
n = -2
n=2n = -2
cos(5*(-2))
cos(5(2))\cos{\left(5 (-2) \right)}
cos(10)
cos(10)\cos{\left(10 \right)}
Степени [src]
 -5*I*n    5*I*n
e         e     
------- + ------
   2        2   
e5in2+e5in2\frac{e^{5 i n}}{2} + \frac{e^{- 5 i n}}{2}
Численный ответ [src]
cos(5*n)
Тригонометрическая часть [src]
/      1        for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                                   
|      1                                            
<-------------               otherwise              
|   /pi      \                                      
|csc|-- - 5*n|                                      
\   \2       /                                      
{1forim(n)=05nmod2π=01csc(5n+π2)otherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 5 n + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}
       2/5*n\
1 - tan |---|
        \ 2 /
-------------
       2/5*n\
1 + tan |---|
        \ 2 /
1tan2(5n2)tan2(5n2)+1\frac{1 - \tan^{2}{\left(\frac{5 n}{2} \right)}}{\tan^{2}{\left(\frac{5 n}{2} \right)} + 1}
/      1        for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                                   
|       2/5*n\                                      
|1 - tan |---|                                      
<        \ 2 /                                      
|-------------               otherwise              
|       2/5*n\                                      
|1 + tan |---|                                      
\        \ 2 /                                      
{1forim(n)=05nmod2π=01tan2(5n2)tan2(5n2)+1otherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{5 n}{2} \right)}}{\tan^{2}{\left(\frac{5 n}{2} \right)} + 1} & \text{otherwise} \end{cases}
/   1      for And(im(n) = 0, 5*n mod 2*pi = 0)
<                                              
\cos(5*n)               otherwise              
{1forim(n)=05nmod2π=0cos(5n)otherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\cos{\left(5 n \right)} & \text{otherwise} \end{cases}
/                          1                            for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                                                                           
|/      1         for And(im(n) = 0, 5*n mod 2*pi = 0)                                      
||                                                                                          
||        2/5*n\                                                                            
<|-1 + cot |---|                                                                            
|<         \ 2 /                                                     otherwise              
||--------------               otherwise                                                    
||       2/5*n\                                                                             
||1 + cot |---|                                                                             
\\        \ 2 /                                                                             
{1forim(n)=05nmod2π=0{1forim(n)=05nmod2π=0cot2(5n2)1cot2(5n2)+1otherwiseotherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{5 n}{2} \right)} - 1}{\cot^{2}{\left(\frac{5 n}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}
/   1      for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                              
<   1                                          
|--------               otherwise              
\sec(5*n)                                      
{1forim(n)=05nmod2π=01sec(5n)otherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(5 n \right)}} & \text{otherwise} \end{cases}
      1      
-------------
   /pi      \
csc|-- - 5*n|
   \2       /
1csc(5n+π2)\frac{1}{\csc{\left(- 5 n + \frac{\pi}{2} \right)}}
/                       1                         for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                                                                     
{1forim(n)=05nmod2π=0{1forim(n)=05nmod2π=0cos(5n)otherwiseotherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\cos{\left(5 n \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}
   1    
--------
sec(5*n)
1sec(5n)\frac{1}{\sec{\left(5 n \right)}}
/      1        for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                                   
<   /pi      \                                      
|sin|-- + 5*n|               otherwise              
\   \2       /                                      
{1forim(n)=05nmod2π=0sin(5n+π2)otherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\sin{\left(5 n + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}
/      1         for And(im(n) = 0, 5*n mod 2*pi = 0)
|                                                    
|        2/5*n\                                      
|-1 + cot |---|                                      
<         \ 2 /                                      
|--------------               otherwise              
|       2/5*n\                                       
|1 + cot |---|                                       
\        \ 2 /                                       
{1forim(n)=05nmod2π=0cot2(5n2)1cot2(5n2)+1otherwise\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(n\right)} = 0 \wedge 5 n \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{5 n}{2} \right)} - 1}{\cot^{2}{\left(\frac{5 n}{2} \right)} + 1} & \text{otherwise} \end{cases}
   /pi      \
sin|-- + 5*n|
   \2       /
sin(5n+π2)\sin{\left(5 n + \frac{\pi}{2} \right)}
Раскрыть выражение [src]
        3                       5   
- 20*cos (n) + 5*cos(n) + 16*cos (n)
16cos5(n)20cos3(n)+5cos(n)16 \cos^{5}{\left(n \right)} - 20 \cos^{3}{\left(n \right)} + 5 \cos{\left(n \right)}