Тригонометрическая часть
[src] / pi\
- cos(y)*cos|z - --| + cos(y + z)
\ 2 / − cos ( y ) cos ( z − π 2 ) + cos ( y + z ) - \cos{\left(y \right)} \cos{\left(z - \frac{\pi}{2} \right)} + \cos{\left(y + z \right)} − cos ( y ) cos ( z − 2 π ) + cos ( y + z ) // 0 for And(im(z) = 0, z mod pi = 0)\
|| | // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
- |< / pi\ |*|< | + |< |
||cos|z - --| otherwise | \\cos(y) otherwise / \\cos(y + z) otherwise /
\\ \ 2 / / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 cos ( z − π 2 ) otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 cos ( y ) otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 cos ( y + z ) otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\cos{\left(z - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos{\left(y \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\cos{\left(y + z \right)} & \text{otherwise} \end{cases}\right) ( − ( { 0 cos ( z − 2 π ) for im ( z ) = 0 ∧ z mod π = 0 otherwise ) ( { 1 cos ( y ) for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise ) ) + ( { 1 cos ( y + z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise ) 2/y z\ / 2/y\\ /z\
1 - tan |- + -| 2*|1 - tan |-||*tan|-|
\2 2/ \ \2// \2/
--------------- - ---------------------------
2/y z\ / 2/y\\ / 2/z\\
1 + tan |- + -| |1 + tan |-||*|1 + tan |-||
\2 2/ \ \2// \ \2// − 2 ⋅ ( 1 − tan 2 ( y 2 ) ) tan ( z 2 ) ( tan 2 ( y 2 ) + 1 ) ( tan 2 ( z 2 ) + 1 ) + 1 − tan 2 ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 - \frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{y}{2} \right)}\right) \tan{\left(\frac{z}{2} \right)}}{\left(\tan^{2}{\left(\frac{y}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{z}{2} \right)} + 1\right)} + \frac{1 - \tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} − ( tan 2 ( 2 y ) + 1 ) ( tan 2 ( 2 z ) + 1 ) 2 ⋅ ( 1 − tan 2 ( 2 y ) ) tan ( 2 z ) + tan 2 ( 2 y + 2 z ) + 1 1 − tan 2 ( 2 y + 2 z ) // 0 for And(im(z) = 0, z mod pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
|| | || | || |
||/ 0 for And(im(z) = 0, z mod pi = 0) | ||/ 1 for And(im(y) = 0, y mod 2*pi = 0) | ||/ 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0) |
||| | ||| | ||| |
||| /z\ | ||| 2/y\ | ||| 2/y z\ |
- |<| 2*cot|-| |*|<|-1 + cot |-| | + |<|-1 + cot |- + -| |
||< \2/ otherwise | ||< \2/ otherwise | ||< \2 2/ otherwise |
|||----------- otherwise | |||------------ otherwise | |||---------------- otherwise |
||| 2/z\ | ||| 2/y\ | ||| 2/y z\ |
|||1 + cot |-| | |||1 + cot |-| | |||1 + cot |- + -| |
\\\ \2/ / \\\ \2/ / \\\ \2 2/ / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 { 0 for im ( z ) = 0 ∧ z m o d π = 0 2 cot ( z 2 ) cot 2 ( z 2 ) + 1 otherwise otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 cot 2 ( y 2 ) − 1 cot 2 ( y 2 ) + 1 otherwise otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 cot 2 ( y 2 + z 2 ) − 1 cot 2 ( y 2 + z 2 ) + 1 otherwise otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{z}{2} \right)}}{\cot^{2}{\left(\frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{y}{2} \right)} - 1}{\cot^{2}{\left(\frac{y}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} - 1}{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) − ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 z ) + 1 2 c o t ( 2 z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise for im ( z ) = 0 ∧ z mod π = 0 otherwise ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 y ) + 1 c o t 2 ( 2 y ) − 1 for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise + ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 y + 2 z ) + 1 c o t 2 ( 2 y + 2 z ) − 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise // 0 for And(im(z) = 0, z mod pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
|| | || | || |
- | ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 { 0 for im ( z ) = 0 ∧ z m o d π = 0 sin ( z ) otherwise otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 cos ( y ) otherwise otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 cos ( y + z ) otherwise otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\sin{\left(z \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos{\left(y \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\cos{\left(y + z \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) − ⎩ ⎨ ⎧ 0 { 0 sin ( z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise for im ( z ) = 0 ∧ z mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 cos ( y ) for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise + ⎩ ⎨ ⎧ 1 { 1 cos ( y + z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise 2/y z\
1 - tan |- + -|
-sin(y - z) + sin(y + z) \2 2/
- ------------------------ + ---------------
2 2/y z\
1 + tan |- + -|
\2 2/ 1 − tan 2 ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 − − sin ( y − z ) + sin ( y + z ) 2 \frac{1 - \tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} - \frac{- \sin{\left(y - z \right)} + \sin{\left(y + z \right)}}{2} tan 2 ( 2 y + 2 z ) + 1 1 − tan 2 ( 2 y + 2 z ) − 2 − sin ( y − z ) + sin ( y + z ) // 0 for And(im(z) = 0, z mod pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
- |< |*|< | + |< |
\\sin(z) otherwise / \\cos(y) otherwise / \\cos(y + z) otherwise / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 sin ( z ) otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 cos ( y ) otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 cos ( y + z ) otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\sin{\left(z \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos{\left(y \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\cos{\left(y + z \right)} & \text{otherwise} \end{cases}\right) ( − ( { 0 sin ( z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise ) ( { 1 cos ( y ) for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise ) ) + ( { 1 cos ( y + z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise ) 4/y z\
4*sin |- + -|
\2 2/
1 - -------------
2
sin(y - z) sin(y + z) sin (y + z)
---------- - ---------- + -----------------
2 2 4/y z\
4*sin |- + -|
\2 2/
1 + -------------
2
sin (y + z) − 4 sin 4 ( y 2 + z 2 ) sin 2 ( y + z ) + 1 4 sin 4 ( y 2 + z 2 ) sin 2 ( y + z ) + 1 + sin ( y − z ) 2 − sin ( y + z ) 2 \frac{- \frac{4 \sin^{4}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\sin^{2}{\left(y + z \right)}} + 1}{\frac{4 \sin^{4}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\sin^{2}{\left(y + z \right)}} + 1} + \frac{\sin{\left(y - z \right)}}{2} - \frac{\sin{\left(y + z \right)}}{2} s i n 2 ( y + z ) 4 s i n 4 ( 2 y + 2 z ) + 1 − s i n 2 ( y + z ) 4 s i n 4 ( 2 y + 2 z ) + 1 + 2 sin ( y − z ) − 2 sin ( y + z ) // 0 for And(im(z) = 0, z mod pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
|| | || | || |
|| /z\ | || 2/y\ | || 2/y z\ |
|| 2*tan|-| | ||1 - tan |-| | ||1 - tan |- + -| |
- |< \2/ |*|< \2/ | + |< \2 2/ |
||----------- otherwise | ||----------- otherwise | ||--------------- otherwise |
|| 2/z\ | || 2/y\ | || 2/y z\ |
||1 + tan |-| | ||1 + tan |-| | ||1 + tan |- + -| |
\\ \2/ / \\ \2/ / \\ \2 2/ / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 2 tan ( z 2 ) tan 2 ( z 2 ) + 1 otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 1 − tan 2 ( y 2 ) tan 2 ( y 2 ) + 1 otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 1 − tan 2 ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{z}{2} \right)}}{\tan^{2}{\left(\frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{y}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) − ⎩ ⎨ ⎧ 0 t a n 2 ( 2 z ) + 1 2 t a n ( 2 z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise ⎩ ⎨ ⎧ 1 t a n 2 ( 2 y ) + 1 1 − t a n 2 ( 2 y ) for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise + ⎩ ⎨ ⎧ 1 t a n 2 ( 2 y + 2 z ) + 1 1 − t a n 2 ( 2 y + 2 z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
// 0 for And(im(z) = 0, z mod pi = 0)\ || | || |
|| | || 1 | || 1 |
- |< 1 |*|<----------- otherwise | + |<--------------- otherwise |
||------ otherwise | || /pi \ | || /pi \ |
\\csc(z) / ||csc|-- - y| | ||csc|-- - y - z| |
\\ \2 / / \\ \2 / / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 1 csc ( z ) otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 1 csc ( − y + π 2 ) otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 1 csc ( − y − z + π 2 ) otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\frac{1}{\csc{\left(z \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- y + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- y - z + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) ( − ( { 0 c s c ( z ) 1 for im ( z ) = 0 ∧ z mod π = 0 otherwise ) ( { 1 c s c ( − y + 2 π ) 1 for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise ) ) + ( { 1 c s c ( − y − z + 2 π ) 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise ) 4/y + z\
4*sin |-----|
\ 2 /
1 - -------------
2
sin(y - z) sin(y + z) sin (y + z)
---------- - ---------- + -----------------
2 2 4/y + z\
4*sin |-----|
\ 2 /
1 + -------------
2
sin (y + z) − 4 sin 4 ( y + z 2 ) sin 2 ( y + z ) + 1 4 sin 4 ( y + z 2 ) sin 2 ( y + z ) + 1 + sin ( y − z ) 2 − sin ( y + z ) 2 \frac{- \frac{4 \sin^{4}{\left(\frac{y + z}{2} \right)}}{\sin^{2}{\left(y + z \right)}} + 1}{\frac{4 \sin^{4}{\left(\frac{y + z}{2} \right)}}{\sin^{2}{\left(y + z \right)}} + 1} + \frac{\sin{\left(y - z \right)}}{2} - \frac{\sin{\left(y + z \right)}}{2} s i n 2 ( y + z ) 4 s i n 4 ( 2 y + z ) + 1 − s i n 2 ( y + z ) 4 s i n 4 ( 2 y + z ) + 1 + 2 sin ( y − z ) − 2 sin ( y + z ) / pi\ / pi\
- sin(z)*sin|y + --| + sin|y + z + --|
\ 2 / \ 2 / − sin ( z ) sin ( y + π 2 ) + sin ( y + z + π 2 ) - \sin{\left(z \right)} \sin{\left(y + \frac{\pi}{2} \right)} + \sin{\left(y + z + \frac{\pi}{2} \right)} − sin ( z ) sin ( y + 2 π ) + sin ( y + z + 2 π ) // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
// 0 for And(im(z) = 0, z mod pi = 0)\ || | || |
- |< |*|< / pi\ | + |< / pi\ |
\\sin(z) otherwise / ||sin|y + --| otherwise | ||sin|y + z + --| otherwise |
\\ \ 2 / / \\ \ 2 / / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 sin ( z ) otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 sin ( y + π 2 ) otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 sin ( y + z + π 2 ) otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\sin{\left(z \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\sin{\left(y + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\sin{\left(y + z + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) ( − ( { 0 sin ( z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise ) ( { 1 sin ( y + 2 π ) for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise ) ) + ( { 1 sin ( y + z + 2 π ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise ) // 0 for And(im(z) = 0, z mod pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
|| | || | || |
|| /z\ | || 2/y\ | || 2/y z\ |
|| 2*cot|-| | ||-1 + cot |-| | ||-1 + cot |- + -| |
- |< \2/ |*|< \2/ | + |< \2 2/ |
||----------- otherwise | ||------------ otherwise | ||---------------- otherwise |
|| 2/z\ | || 2/y\ | || 2/y z\ |
||1 + cot |-| | ||1 + cot |-| | ||1 + cot |- + -| |
\\ \2/ / \\ \2/ / \\ \2 2/ / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 2 cot ( z 2 ) cot 2 ( z 2 ) + 1 otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 cot 2 ( y 2 ) − 1 cot 2 ( y 2 ) + 1 otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 cot 2 ( y 2 + z 2 ) − 1 cot 2 ( y 2 + z 2 ) + 1 otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{z}{2} \right)}}{\cot^{2}{\left(\frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{y}{2} \right)} - 1}{\cot^{2}{\left(\frac{y}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} - 1}{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) − ⎩ ⎨ ⎧ 0 c o t 2 ( 2 z ) + 1 2 c o t ( 2 z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise ⎩ ⎨ ⎧ 1 c o t 2 ( 2 y ) + 1 c o t 2 ( 2 y ) − 1 for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise + ⎩ ⎨ ⎧ 1 c o t 2 ( 2 y + 2 z ) + 1 c o t 2 ( 2 y + 2 z ) − 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise 2/y z\
sec |- + -|
\2 2/
1 - ----------------
2/y z pi\
sec |- + - - --|
1 1 \2 2 2 /
----------------- - ----------------- + --------------------
/ pi\ / pi\ 2/y z\
2*sec|y - z - --| 2*sec|y + z - --| sec |- + -|
\ 2 / \ 2 / \2 2/
1 + ----------------
2/y z pi\
sec |- + - - --|
\2 2 2 / − sec 2 ( y 2 + z 2 ) sec 2 ( y 2 + z 2 − π 2 ) + 1 sec 2 ( y 2 + z 2 ) sec 2 ( y 2 + z 2 − π 2 ) + 1 − 1 2 sec ( y + z − π 2 ) + 1 2 sec ( y − z − π 2 ) \frac{- \frac{\sec^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\sec^{2}{\left(\frac{y}{2} + \frac{z}{2} - \frac{\pi}{2} \right)}} + 1}{\frac{\sec^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\sec^{2}{\left(\frac{y}{2} + \frac{z}{2} - \frac{\pi}{2} \right)}} + 1} - \frac{1}{2 \sec{\left(y + z - \frac{\pi}{2} \right)}} + \frac{1}{2 \sec{\left(y - z - \frac{\pi}{2} \right)}} s e c 2 ( 2 y + 2 z − 2 π ) s e c 2 ( 2 y + 2 z ) + 1 − s e c 2 ( 2 y + 2 z − 2 π ) s e c 2 ( 2 y + 2 z ) + 1 − 2 sec ( y + z − 2 π ) 1 + 2 sec ( y − z − 2 π ) 1 / 0 for And(-im(z) + im(y) = 0, (y - z) mod pi = 0) / 0 for And(im(y) + im(z) = 0, (y + z) mod pi = 0) 2/y z\
< < 1 - tan |- + -|
\sin(y - z) otherwise \sin(y + z) otherwise \2 2/
------------------------------------------------------------ - ----------------------------------------------------------- + ---------------
2 2 2/y z\
1 + tan |- + -|
\2 2/ 1 − tan 2 ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 + ( { 0 for im ( y ) − im ( z ) = 0 ∧ ( y − z ) m o d π = 0 sin ( y − z ) otherwise 2 ) − ( { 0 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d π = 0 sin ( y + z ) otherwise 2 ) \frac{1 - \tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} + \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} - \operatorname{im}{\left(z\right)} = 0 \wedge \left(y - z\right) \bmod \pi = 0 \\\sin{\left(y - z \right)} & \text{otherwise} \end{cases}}{2}\right) - \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod \pi = 0 \\\sin{\left(y + z \right)} & \text{otherwise} \end{cases}}{2}\right) tan 2 ( 2 y + 2 z ) + 1 1 − tan 2 ( 2 y + 2 z ) + 2 { 0 sin ( y − z ) for im ( y ) − im ( z ) = 0 ∧ ( y − z ) mod π = 0 otherwise − 2 { 0 sin ( y + z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod π = 0 otherwise 2/y z\ /y z\ /y z\
1 - tan |- + -| tan|- - -| tan|- + -|
\2 2/ \2 2/ \2 2/
--------------- + --------------- - ---------------
2/y z\ 2/y z\ 2/y z\
1 + tan |- + -| 1 + tan |- - -| 1 + tan |- + -|
\2 2/ \2 2/ \2 2/ 1 − tan 2 ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 − tan ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 + tan ( y 2 − z 2 ) tan 2 ( y 2 − z 2 ) + 1 \frac{1 - \tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} - \frac{\tan{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} + \frac{\tan{\left(\frac{y}{2} - \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} - \frac{z}{2} \right)} + 1} tan 2 ( 2 y + 2 z ) + 1 1 − tan 2 ( 2 y + 2 z ) − tan 2 ( 2 y + 2 z ) + 1 tan ( 2 y + 2 z ) + tan 2 ( 2 y − 2 z ) + 1 tan ( 2 y − 2 z ) 1 1
--------------- - ------------------
/pi \ /pi \
csc|-- - y - z| csc(z)*csc|-- - y|
\2 / \2 / 1 csc ( − y − z + π 2 ) − 1 csc ( z ) csc ( − y + π 2 ) \frac{1}{\csc{\left(- y - z + \frac{\pi}{2} \right)}} - \frac{1}{\csc{\left(z \right)} \csc{\left(- y + \frac{\pi}{2} \right)}} csc ( − y − z + 2 π ) 1 − csc ( z ) csc ( − y + 2 π ) 1 // 0 for And(im(z) = 0, z mod pi = 0)\
|| | // 1 for And(im(y) = 0, y mod 2*pi = 0)\ // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
|| 1 | || | || |
- |<----------- otherwise |*|< 1 | + |< 1 |
|| / pi\ | ||------ otherwise | ||---------- otherwise |
||sec|z - --| | \\sec(y) / \\sec(y + z) /
\\ \ 2 / / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 1 sec ( z − π 2 ) otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 1 sec ( y ) otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 1 sec ( y + z ) otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\frac{1}{\sec{\left(z - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(y \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(y + z \right)}} & \text{otherwise} \end{cases}\right) ( − ( { 0 s e c ( z − 2 π ) 1 for im ( z ) = 0 ∧ z mod π = 0 otherwise ) ( { 1 s e c ( y ) 1 for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise ) ) + ( { 1 s e c ( y + z ) 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise ) 1 1
---------- - -------------
sec(y + z) csc(z)*sec(y) 1 sec ( y + z ) − 1 csc ( z ) sec ( y ) \frac{1}{\sec{\left(y + z \right)}} - \frac{1}{\csc{\left(z \right)} \sec{\left(y \right)}} sec ( y + z ) 1 − csc ( z ) sec ( y ) 1 2/pi y z\
csc |-- - - - -|
\2 2 2/
1 - ----------------
2/y z\
csc |- + -|
1 1 \2 2/
------------ - ------------ + --------------------
2*csc(y - z) 2*csc(y + z) 2/pi y z\
csc |-- - - - -|
\2 2 2/
1 + ----------------
2/y z\
csc |- + -|
\2 2/ 1 − csc 2 ( − y 2 − z 2 + π 2 ) csc 2 ( y 2 + z 2 ) 1 + csc 2 ( − y 2 − z 2 + π 2 ) csc 2 ( y 2 + z 2 ) − 1 2 csc ( y + z ) + 1 2 csc ( y − z ) \frac{1 - \frac{\csc^{2}{\left(- \frac{y}{2} - \frac{z}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}}{1 + \frac{\csc^{2}{\left(- \frac{y}{2} - \frac{z}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}} - \frac{1}{2 \csc{\left(y + z \right)}} + \frac{1}{2 \csc{\left(y - z \right)}} 1 + c s c 2 ( 2 y + 2 z ) c s c 2 ( − 2 y − 2 z + 2 π ) 1 − c s c 2 ( 2 y + 2 z ) c s c 2 ( − 2 y − 2 z + 2 π ) − 2 csc ( y + z ) 1 + 2 csc ( y − z ) 1 1 1
---------- - ------------------
sec(y + z) / pi\
sec(y)*sec|z - --|
\ 2 / 1 sec ( y + z ) − 1 sec ( y ) sec ( z − π 2 ) \frac{1}{\sec{\left(y + z \right)}} - \frac{1}{\sec{\left(y \right)} \sec{\left(z - \frac{\pi}{2} \right)}} sec ( y + z ) 1 − sec ( y ) sec ( z − 2 π ) 1 / 0 for And(-im(z) + im(y) = 0, (y - z) mod pi = 0) / 0 for And(im(y) + im(z) = 0, (y + z) mod pi = 0)
| |
| /y z\ | /y z\
| 2*cot|- - -| | 2*cot|- + -|
< \2 2/ < \2 2/ 1
|--------------- otherwise |--------------- otherwise 1 - -----------
| 2/y z\ | 2/y z\ 2/y z\
|1 + cot |- - -| |1 + cot |- + -| cot |- + -|
\ \2 2/ \ \2 2/ \2 2/
----------------------------------------------------------------- - ---------------------------------------------------------------- + ---------------
2 2 1
1 + -----------
2/y z\
cot |- + -|
\2 2/ 1 − 1 cot 2 ( y 2 + z 2 ) 1 + 1 cot 2 ( y 2 + z 2 ) + ( { 0 for im ( y ) − im ( z ) = 0 ∧ ( y − z ) m o d π = 0 2 cot ( y 2 − z 2 ) cot 2 ( y 2 − z 2 ) + 1 otherwise 2 ) − ( { 0 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d π = 0 2 cot ( y 2 + z 2 ) cot 2 ( y 2 + z 2 ) + 1 otherwise 2 ) \frac{1 - \frac{1}{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}}{1 + \frac{1}{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}} + \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} - \operatorname{im}{\left(z\right)} = 0 \wedge \left(y - z\right) \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{y}{2} - \frac{z}{2} \right)}}{\cot^{2}{\left(\frac{y}{2} - \frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}}{2}\right) - \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\cot^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}}{2}\right) 1 + c o t 2 ( 2 y + 2 z ) 1 1 − c o t 2 ( 2 y + 2 z ) 1 + 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 y − 2 z ) + 1 2 c o t ( 2 y − 2 z ) for im ( y ) − im ( z ) = 0 ∧ ( y − z ) mod π = 0 otherwise − 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 y + 2 z ) + 1 2 c o t ( 2 y + 2 z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod π = 0 otherwise 2/y z pi\
cos |- + - - --|
\2 2 2 /
1 - ----------------
/ pi\ / pi\ 2/y z\
cos|y - z - --| cos|y + z - --| cos |- + -|
\ 2 / \ 2 / \2 2/
--------------- - --------------- + --------------------
2 2 2/y z pi\
cos |- + - - --|
\2 2 2 /
1 + ----------------
2/y z\
cos |- + -|
\2 2/ 1 − cos 2 ( y 2 + z 2 − π 2 ) cos 2 ( y 2 + z 2 ) 1 + cos 2 ( y 2 + z 2 − π 2 ) cos 2 ( y 2 + z 2 ) + cos ( y − z − π 2 ) 2 − cos ( y + z − π 2 ) 2 \frac{1 - \frac{\cos^{2}{\left(\frac{y}{2} + \frac{z}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}}{1 + \frac{\cos^{2}{\left(\frac{y}{2} + \frac{z}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}} + \frac{\cos{\left(y - z - \frac{\pi}{2} \right)}}{2} - \frac{\cos{\left(y + z - \frac{\pi}{2} \right)}}{2} 1 + c o s 2 ( 2 y + 2 z ) c o s 2 ( 2 y + 2 z − 2 π ) 1 − c o s 2 ( 2 y + 2 z ) c o s 2 ( 2 y + 2 z − 2 π ) + 2 cos ( y − z − 2 π ) − 2 cos ( y + z − 2 π ) // 1 for And(im(y) + im(z) = 0, (y + z) mod 2*pi = 0)\
|| |
|| 2/y z\ |
// 0 for And(im(z) = 0, z mod pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\ ||1 - tan |- + -| |
- |< |*|< | + |< \2 2/ |
\\sin(z) otherwise / \\cos(y) otherwise / ||--------------- otherwise |
|| 2/y z\ |
||1 + tan |- + -| |
\\ \2 2/ / ( − ( { 0 for im ( z ) = 0 ∧ z m o d π = 0 sin ( z ) otherwise ) ( { 1 for im ( y ) = 0 ∧ y m o d 2 π = 0 cos ( y ) otherwise ) ) + ( { 1 for im ( y ) + im ( z ) = 0 ∧ ( y + z ) m o d 2 π = 0 1 − tan 2 ( y 2 + z 2 ) tan 2 ( y 2 + z 2 ) + 1 otherwise ) \left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(z\right)} = 0 \wedge z \bmod \pi = 0 \\\sin{\left(z \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos{\left(y \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} + \operatorname{im}{\left(z\right)} = 0 \wedge \left(y + z\right) \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{z}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) ( − ( { 0 sin ( z ) for im ( z ) = 0 ∧ z mod π = 0 otherwise ) ( { 1 cos ( y ) for im ( y ) = 0 ∧ y mod 2 π = 0 otherwise ) ) + ⎩ ⎨ ⎧ 1 t a n 2 ( 2 y + 2 z ) + 1 1 − t a n 2 ( 2 y + 2 z ) for im ( y ) + im ( z ) = 0 ∧ ( y + z ) mod 2 π = 0 otherwise